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ABSTRACT: This paper shows the results of a study in which the new Plaxis Hardening Soil model with
small-strain stiffness (HSsmall) was analyzed with respect to its hysteretic damping characteristics for dynamic
applications. An analytical expression was derived to formulate the local damping ratio as a function of the local
shear strain. Results are shown for common ranges of parameters. Subsequently, the model with an existing
parameter data set for Kaolin was used in dynamic finite element calculations and subjected to cyclic loading
at different strain levels as well as free vibration. The results were compared with the analytical expression.
A comparison was made with experimental data on damping, and another comparison was made with Rayleigh
damping, which is commonly used in simple models. From the results it was concluded that HSsmall model has
indeed some potential for dynamic applications. However, it does not yet capture material damping at small strain
levels (for which Rayleigh damping or viscous damping may be added), and it does not include the accumulation
of strain (or pore pressure) with multiple load cycles.

1 INTRODUCTION

In a former research project (Benz, 2006; Benz et al.
2006) an extension was made to the Plaxis Hardening
Soil (HS) model (Schanz, 1998) in order to cope with
the high-stiffness behaviour that geo-materials show
when subjected to very small strains. The resulting
model (HSsmall, as it is called) has been tested exten-
sively in various static applications to demonstrate its
usefulness for the geotechnical engineering applica-
tions (e.g. Brinkgreve et. al. 2006).Although the model
has not been designed specifically for dynamic appli-
cations, it does have capabilities to describe dynamic
soil behaviour to some extend. The small-strain stiff-
ness formulation involves the degradation of the shear
stiffness with the shear strain, and it takes into account
that the high small-strain stiffness is regained upon
load reversal. When subjected to cyclic shear load-
ing the model shows hysteresis. This feature provides
damping in dynamic applications.

This paper shows the results of a recent study in
which the HSsmall model has been further analyzed
and tested in order to evaluate its damping character-
istics in dynamic applications. Chapter 2 gives a brief
description of the model. In Chapter 3 the hysteretic

damping characteristics of the model are analytically
derived based on the small-strain stiffness formula-
tion. Chapter 4 demonstrates the results of the derived
expression for a common range of parameter values.
Chapter 5 shows a numerical verification example
based on an existing HSsmall data set for Kaolin clay.
For load cycles at different strain levels as well as for
free vibration the damping observed from the numer-
ical results is compared with the analytical expression
as derived in Chapter 3. In Chapter 6 the behaviour
of the data set is compared with empirical observa-
tions. Chapter 7 shows a comparison with Rayleigh
damping, which is generally used in models that do
not include damping in the constitutive relation. The
final Chapter 8 gives the conclusions of this study.

2 SMALL-STRAIN STIFFNESS MODEL

The HSsmall model is based on the Plaxis Hardening
Soil model, extended with an elastic overlay model
to take into account the high stiffness at small strain
levels. The model has been implemented in the finite
element program Plaxis (version 8.4). The extra infor-
mation that is needed for the small-strain stiffness

737



Figure 1. Reduction of secant shear modulus with shear
strain.

formulation comes from modulus reduction curves
where the shear modulus, G, is plotted as a logarithmic
function of the shear strain, γ , ranging from very small
strain levels (vibrations) up to large strain levels. In the
HSsmall model the reduction curve is characterized
by the small-strain shear modulus, G0, and the shear
strain at which the secant shear modulus has reduced
to 0.7 times G0 (γ0.7); Fig. 1. The two parameters G0
and γ0.7 are the only extra parameters compared to the
original HS model. In fact, it has been demonstrated
by comparing curves of several different types of soil
that the particular shape of the curve does not change
much and that γ0.7 is generally between 1 and 2 times
10−4. G0 generally ranges from around 10 times Gur
for soft soils, down to 2.5 times Gur for harder types
of soil, where Gur = Eur /(2(1 + νur)).

The decay of the secant shear modulus depends on
the amount of shear strain as depicted in Fig. 1.A good
approximation is given by Eq. 1.

The constant a is set to 0.385 to arrive at the best fit
(central line Fig. 1). It should be noted that the curve
shows the secant shear modulus, not the tangent shear
modulus. From the secant shear modulus the stress-
strain relationship can simply be formulated as:

Taking the derivative with respect to the shear strain
gives the tangent shear modulus:

The curve in Fig. 1 reaches far into the plastic
domain. As the HSsmall model is an overlay model,
the tangent shear modulus is bounded by a lower limit,
Gur , of the original HS model. When combined with
the HS model, the apparent shear modulus will reduce
further due to plasticity. As for the original HS model,
plasticity occurs due to an isotropic shear hardening
surface and an isotropic cap hardening surface.

The model is primarily meant for shear stiffness
reduction. The bulk modulus is calculated from the
shear modulus using a fixed elastic Poisson’s ratio.

So far, only continuous loading was considered but
in practice the stiffness increases when the loading
direction changes. For a full ‘180 degrees’ load rever-
sal, the stiffness is supposed to restart at its maximum.
For a new strain path that is in between a continuation
in the same direction and a full load reversal, an inter-
mediate (interpolated) stiffness is assumed. Therefore,
the small-strain stiffness model memorizes the ‘devia-
toric’ strain history and uses a generalized shear strain
parameter to evaluate to what extend the loading direc-
tion deviates from the strain history. On the basis of
this information it is determined which stiffness should
be used. More details about the precise formulation of
this generalized small-strain stiffness concept can be
found in Benz, 2006.

3 HYSTERETIC DAMPING

When subjected to cyclic shear loading, the HSsmall
model will show typical hysteretic behaviour as visu-
alized in Fig. 2. Starting from the small-strain shear
stiffness, G0, the actual stiffness will decrease with
increasing shear strain according to Fig. 1. Upon load
reversal the stiffness will restart from G0 and will
decrease again until the next load reversal.

Underneath we will consider cyclic shear loading
until a particular magnitude of cyclic shear strain γc.
From the above expressions (1–3), after some elabora-
tion, the dissipated energy in a load cycle fromγ = −γc
to +γc and back to −γc, equivalent with the area of
the closed loop in Fig. 2, can be formulated as:

Now, the local hysteretic damping ratio, ξ, can be
defined as:
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Figure 2. Hysteretic behaviour in the HSsmall model.

where Es is the energy stored at maximum strain γc:

This holds as long as Gur has not been reached, i.e.:

The above damping ratio in the HS small model only
applies as long as the material behaviour remains elas-
tic and the shear modulus decreases according to the
small-strain formulation.As soon as Gur is reached the
damping does not further increase. On the other hand,
as soon as (hardening) plasticity occurs, the observed
damping will further increase. In both cases the above
equations do not apply anymore.

It should also be noted that the above damping ratio
is independent from the loading frequency, since the
derivation in this paragraph is purely based on the
stress-strain relationship, which is time-independent.

4 PARAMETER VARIATIONS

On the basis of the above equations a simple parametric
study was performed to evaluate the range of damping
ratios that can be expected from realistic combinations
of small-strain parameters. Fig. 3 shows the damping
ratio as a function of the cyclic shear strain γc for dif-
ferent values of γ0.7 [1 · 10−4 − 3 · 10−4] and different
G0/Gur ratios [2.5–10].

Figure 3. Damping ratio ξ as a function of cyclic shear
strain γc.

Table 1. HS small material data set for Kaolin (after Benz).

Parameter Symbol Value Unit

Unsaturated unit weight γunsat 11.3 kN/m3

Saturated unit weight γsat 17.0 kN/m3

Small strain stiffness Gref
0 33300 kN/m2

Shear strain at 0.7G0 γ0.7 2 · 10−4 –
Poisson’s ratio νur 0.2 –
Triaxial compression stiffness Eref

50 1500 kN/m2

Primary oedometer stiffness Eref
oed 750 kN/m2

Unloading/reloading stiffness Eref
ur 8000 kN/m2

Reference pressure pref 100 kN/m2

Rate of stress-dependency m 1.0 –
Cohesion c 0.0 kN/m2

Friction angle ϕ 21.0 ◦
Dilatancy angle ψ 0.0 ◦
Failure ratio Rf 0.9 –
Stress ratio in primary compr. Knc

0 0.64 –

Regarding the variation of γ0.7 it can be seen that
a lower γ0.7 gives more damping, or damping occurs
at smaller shear strain. On the other hand, a variation
of G0/Gur only leads to a different maximum damp-
ing ratio, regardless the selected value of γ0.7. When
the difference between G0 and Gur (i.e. the difference
between the upper bound and lower bound G-value)
is larger, the maximum damping is also larger. The
maximum damping for a particular combination of
parameters can be obtained from Eq. 6 by substituting
the maximum shear strain according to Eq. 8.

5 EXAMPLE

In this paragraph a numerical example will be consid-
ered. The example is performed with an existing HS
small material data set representing soft Kaolin clay
with a plasticity index of 30%, as reported by Benz
(2006). The full material data set is listed in Table 1.
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Figure 4. Finite element mesh composed of 15-node
elements.

From the above data, the following auxiliary param-
eters for dynamic application can be determined:

Shear wave velocity at pref :
cs = √

(Gref
0 /ρ) = 170.0 m/s

Compression wave velocity at pref :
cp = √

(Eref
oed0/ρ) = 277.6 m/s

where Eref
oed0 is the oedometer stiffness at small strains

and ρ is the density (γunsat /9.81).

The example being considered is a 1 m thick clay
layer subjected to shearing. Soil self weight is not
considered, but an effective confining pressure of
100 kN/m2 is applied around the layer. To ensure that
the behaviour is purely elastic, a preloading (com-
pression as well as deviatoric loading) is applied and
removed before the intended shear loading.

Fig. 4 shows the 5 × 1 m2 finite element mesh com-
posed of 15-node (cubic strain) triangular elements
that has been used for the analysis.

To verify the hysteretic behaviour in the numeri-
cal model, cyclic shearing has been simulated in a
dynamic finite element analysis by imposing a pre-
scribed displacement at the bottom boundary while
leaving the other boundaries free (with confining pres-
sure). In this way a number of load cycles were applied
at different shear strain levels. To avoid dynamic
amplification a loading frequency of 10 Hz has been
selected, which is well below the model’s natural fre-
quency (≈35 Hz). The damping (dissipated energy in
the hysteresis loop) obtained from the numerical model
compares well with the analytical results (see Fig. 5).
In addition, an initial shear loading has been applied at
the top of the model and then released in a dynamic cal-
culation. The resulting natural cyclic movement (free
vibration) at the upper side is visualized in Fig. 6.
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Figure 5. Verification of damping for different strain levels.
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Figure 6. Natural cyclic movement after release of shear
load.

The reduction of the displacement amplitude in two
successive cycles relates to the damping ratio in the
following way:

where ω0 is the eigen-frequency, ωD is the damped
frequency and uk is the horizontal displacement ampli-
tude in cycle k From this expression and the results
in Fig. 6 the damping ratio can be back-analyzed for
different levels of cyclic shear strain. Fig. 7 shows a
comparison with the damping ratio according to Eq. 6.
At low strain levels the observed damping is less than
the theoretical value, whereas at higher strain levels the
results match reasonably well. After a few cycles the
strain level becomes so small that there is hardly any
further damping, so that the free vibration continues
more than observed in reality.
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Figure 7. Verification of damping from free vibration.

Figure 8. Small-strain stiffness and damping ratio for clays
with different plasticity index (after Vucevic et al. 1991). The
dashed line corresponds to the Kaolin data set in Table 1.

6 COMPARISON WITH EMPIRICAL DATA

Vucevic & Dobry (1991) have compiled empirical data
on small-strain stiffness and material damping for dif-
ferent types of clay, using the plasticity index as a
reference parameter. Fig. 8 shows this data, with the
results for the Kaolin data set superimposed on it as a

dashed line. The upper graph indicates that for Kaolin
with a plasticity index of 30% the stiffness reduction
should occur later than modelled by the data set in
Table 1. This would suggest the use of a higher value
of γ0.7. On the other hand, the lower graph indicates
that at lower strain levels there is more damping in
reality than modelled by the data set. The latter can-
not be solved by a different value of γ0.7, but requires
additional damping independent from the strain level
(viscous or Rayleigh damping).

7 COMPARISON WITH RAYLEIGH DAMPING

Apart from hysteretic material damping, damping can
be modelled in general by means of Rayleigh damping.
Rayleigh damping can be regarded as a ‘trick’ to add
viscous damping, since it contributes to the velocity
term in the dynamic equation by taking a portion of
mass (αM ) and a portion of stiffness (βK), where M
is the mass matrix, K is the stiffness matrix and α and
β are the Rayleigh coefficients.

In contrast to hysteretic damping, Rayleigh damp-
ing is frequency-dependent. Hence, before selecting
the Rayleigh coefficients to arrive at a particular damp-
ing ratio, a range of target frequencies must be selected
in accordance with the natural frequency of the system
and the dominant load frequency.

For the example as considered in Section 5 (free
vibration after release of an initial shear load) an
alternative calculation has been performed using the
standard Hardening Soil model without small-strain
stiffness, and thus without hysteretic damping, but
using Rayleigh damping instead. Again, hardening
during the dynamic application was excluded by
preloading and unloading the sample in compression
and shear before applying the free vibration.

The Rayleigh coefficients were based on a damping
ratio of 11.2% (average in the previous example) and
a target frequency between 10 Hz and 35 Hz, giving
α = 10.946 and β = 7.928 · 10−4. The resulting natural
cyclic movement at the upper side of the model with
Rayleigh damping is visualized in Fig. 9. Again, the
damping ratio can be back-analyzed using Eq. 9, which
indeed gives damping ratios around 11.2% (except for
the first cycle).

In contrast with the previous example with hys-
teretic damping where the damping ratio was found to
be dependent on the strain level, the current example
shows a more or less constant damping ratio which
is typical for viscous damping. Moreover, the natu-
ral vibration seems, to some extend, be influenced
by the damping. As a result, the total picture is sig-
nificantly different, although it was intended that the
results from both cases would match. In conclusion,
Rayleigh damping cannot be used as an alternative
for hysteretic material damping. However, it can be
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Figure 9. Natural cyclic movement with Rayleigh damping.

added to hysteretic damping to provide at least a small
amount of damping at small strain levels.

8 CONCLUSIONS

This paper demonstrates that the Plaxis Hardening Soil
model with small-strain stiffness (HSsmall) has capa-
bilities to model hysteretic damping in dynamic appli-
cations. An analytical expression has been derived for
the damping ratio based on the stiffness reduction
curve. Results were shown for different combinations
of realistic model parameters. The analytical results

were also used to verify the numerical implementa-
tion of the model on the basis of an existing data set
for Kaolin. The numerical results for constant load
cycles were found to match the analytical expression
nicely, whereas the numerical results based on free
vibration show a deviation at the high strain levels
in the first cycles. Moreover, a comparison has been
made with empirical data from Vucevic et al. From
this comparison it can be concluded that, in order to
model damping even more realistically, a higher value
of γ0.7 should be used and viscous damping should be
added. Finally, a comparison has been made between
hysteretic damping and Rayleigh damping. From this
analysis it was concluded that Rayleigh damping can
not be used as an alternative for hysteretic damping,
but that it can be added to hysteretic damping to pro-
vide at least a small amount of damping at small strain
levels. Finally, it should be mentioned that the current
HSsmall model does not allow for accumulation of
strain or pore pressure with cyclic loading. The latter
will be considered in the near future.
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