

2022 年 12 月 Vol.6 No.4

www.cisec.cn

■ WindPower 智慧风基软件介绍

- ETABS 与其它软件进行指标对比时的注意事项
- 基于 SAFE 的欧标冲切设计概述及与国标的异同
- 梁拱体系桥梁中吊杆力的计算
- 工程应用常见问题案例解析

主 办:北京筑信达工程咨询有限公司

主 编: 李 立

美编:张翠莲、王蓉

北京筑信达工程咨询有限公司

地址:北京市石景山区古盛路 36 号泰然大厦 4 层 408 室 电话:010-68924600 技术热线:010-68924600-200 传真: 010-68924600-8 网址:www.cisec.cn 在线支持:support.cisec.cn 邮箱:support@cisec.cn(技术支持) sales@cisec.cn(产品销售)

筑信达武汉技术中心 地址: 武汉市洪山区武珞路 717 号兆富国际 1308 室 技术热线: 027-8788 6890 / 8788 6891

区域代理 _{北方区}

北京华思维泰克科技有限公司 ^{联系人: 王博} 手 机: 159 1060 8694 **华**东区

上海江图信息科技有限公司 联系人: 薛平 手机: 137 0172 6345 华南区

广州倍益软件技术有限公司 联系人:田茂金 手机:13760719009 华中区

武汉百思通科技有限公司 联系人:叶亮 手机:13995616575 西南区

金橡果科技成都有限公司 ^{联系人:刘宇}

手 机: 185 1282 0985

C 目录 ontent

一 专题文章 一

記言达

WindPower 智慧风基软件介绍 1

- ETABS 与其它软件进行指标对比时的注意事项 8
- 基于 SAFE 的欧标冲切设计概述及与国标的异同 16
 - 梁拱体系桥梁中吊杆力的计算 25

一 工程应用常见问题案例解析 一

- 基础错层时的层剪力统计 33
- 基础不同标高时的层剪力统计 36
- 弹塑性时程分析模型检查二则 39
- 立柱在节点是否打断对美标设计的影响 44
 - 梁的整体稳定系数与无支撑长度系数 46
 - 是否考虑剪切中心对杆件分析的影响 48
 - 阶段施工分析时临时支座的模拟 50
 - 新版发布 53
 - 活动报道 55
 - 2023 筑信达用户大会 1 号通知 57

WindPower 智慧风基软件介绍

筑信达 孙雪艳

"双碳"战略提出建立以新能源为主体的电力系统。风电是新能源中技术成熟的发电方式,也是清洁的可再生能源。随着 新能源技术的发展和储能技术的涌现,风电的竞争力进一步加强。在新技术和新能源的共同推动下,风电具有广阔的发展前 景。风机发电塔属于高耸结构,基础是风力发电机组的主要承载部件,是保证风力发电机组的安全所在。基础承受 360 度重 复荷载和大偏心受力,对地基基础的要求高,妥善地设计风机基础,是风电工程的设计重点。

WindPower 智慧风基软件(以下简称智慧风基)是阳光新能源开发股份有限公司委托北京筑信达工程咨询有限公司研发的一款风机基础设计软件。智慧风基软件可以进行重力式基础、肋梁基础、承台桩基础的设计、优化、计算书输出、有限元 模型对比和施工图绘制。本文介绍智慧风基软件的主要功能。

1.功能简介

智慧风基软件可以对圆形重力式基础、多边形重力式基础、圆形肋梁基础、多边形肋梁基础、圆形承台桩基础和多边形 承台桩基础进行设计,根据软件的使用过程分为六大功能模块:建模模块、设计验算模块、优化设计模块、计算书输出模块、 施工图模块、有限元模块。

智慧风基软件操作主界面如图 1 所示,中间视图区,根据功能显示各视图,上方是菜单条,按照基础类型分类;左侧是导航栏,显示当前类型的所有基础以及副菜单项(副菜单项与主菜单有相同的功能);右侧是数据编辑窗口,编辑模型信息、 钢筋信息等;下侧是结果显示区,显示设计结果。选择基础类型后,在同一菜单下完成该类型基础的设计全过程。

图 1 WindPower 智慧风基软件操作界面

2.建模

智慧风基软件可以计算的基础类型如图 2 所示。软件采用参数化建模的方式输入模型的各参数,在输入各项设计参数时, 对于规范中相关的参数,给出规范的数据表格用于参考。土层数据、荷载数据、锚栓笼数据等支持导入导出操作,可以将数 据导出为 Excel 文档,也可以编辑 Excel 文件,并将文件中的数据导入到软件中。规范表格提示可以快速进行设计参数的输入, 免去查阅规范的操作。数据的导入导出进行数据的重复使用,提高数据的利用率。

模型数据分类进行输入,切换各个数据输入项,可以在菜单中选择相应功能,也可以使用导航栏中的按钮进行功能切换, 两种方式均可以修改模型数据。

在基础模型和配筋计算功能中,修改模型的数据,如基础尺寸修改、基础配筋信息调整等,视图区下方的设计结果实时 更新。设计结果按照验算项分类显示,点击具体设计项,可查看设计细节,如图 3 所示,在设计结果中点击基础抗剪验算, 弹出的窗口中显示基础抗剪验算的设计细节。

		_																
24	INR	聖力描述 防学基础	11241 (11	8														-
ALL BALL	See a	2018 REAR (14)	5 (O) 82 (M2248				RIN N	Ethian	Reider	BRISAP SIRSA	NARTANA							
导航栏		-															基础编辑	
JT-1	Wandim																	512. ⁰
	M-HOLE							_								_	30	建尺寸
	土助住意			_		_		250	an state of								基础尺寸接触	
	风机用数									or the star in the						1	台社顶标高 ==	500 0
		5						13	10:00:00	198.0ET#		Adda (com)	同切未載力	Barden			現土厚度 ==	0
	*1*19614									HUL	.84	P(7) (KN)	(kN)	TIME			基础学的学行 ==	10600
	福祉无效者		/							正年.		1721.307	42457.336	3.0	-		CERCIA AN	2210.5
	基础模型		/				1			6.湯約2	TR	8217.02	42457 336	32	-		611基度	1000 0-
	MININ W	5	1		\sim	1		13	1 町切承載	1力计算	10011			1	_		校出基理 ==	2800
	100,00117.00	-			()	11			有效產度。	$h_0 = H_1 + H_2 - c =$	800.0 + 28	10.0 - 80.0 - 21	0 = 3500.0mm = 3.5i	•			未知己律高度 ==	800 0
	代化设计		1	N	\sim	Л		1	-45 5000m	u/80.4 = 5000mm		800	900				台牡轩读亮度 ==	1650 0
	计算机		1					/				$\beta_h = \int_{-\infty}^{\infty} \frac{1}{h_0}$	2000.0 = 0.795				Mittr# (m)	1000 (5)
	-	5							前切牙载力	$V_r = 0.7\beta_k f_1 A_0 =$	0.7 × 0.795	× 1.71 × 44.60	1 = 42457.336kN				単に単常(密幕)と)	0.50
	NT2				-			13	2 正常工资 約4. V=1	₹ ni = 7721.36kN							THE COLUMN AND AND A	4.8
	BERRIA						/		$y_0 V = 1.1 \times$	7721.357 = 8493.4	$33 RN \le 424$	^{57.34kN} ,满5	2《陆上风电场工程》	电机能基础设计规	范≥729景規定。		0.0000000	2001 1110 1
	ROAM					/		13	3 根端工ど	≥ n = 12489.03kN							些花芽蕉	100
		-							$\gamma_0 V = 1.1 \times$	12409.031 = 1373	$505kN \leq 4$	2457.34kN	幕宗《陸上陸東扬王』	2亿中机均基础设计	报防》72.9年程定。	1.00	垫取升扩充度 ==	100
					~			13	4多遇地震	[工況			The strength of generation				15분위단 ==	3100
								<u> </u>	10 A., 1 - 1								回療支援 ==	200 0
												t a	计结果分	类查看浮	时显示,并词	۹í –	108719703 m	400
												V	」香着设计	細节			114 1-224-018 M	100 (B)
		(Tan		_						- Maria							10種品税: 50.5m ³ 1500日税: 30.7m ³	☑ 台柱底部全开挖
		ALLER COLUMN >>	1	東 18月1日日 (18月)	RANTERAL	NAMES AND A DESCRIPTION OF	5 T Z 201	89. XV	1/2.5	(1)日 (1)日日 (1)日 (1)日日(1)日(1)日(1)日(1)日(1)日(1)日(1)日(1)日(1)		ALLEY THE	NAS IN FRANT	THE REAL POINT	N2 652.653040.			
		教开面印始第 >>		TERRE? (M)	PARALEPAR	加加加设计规	EP 6.1.384	R2 (21	1.0.0 EHR 0		-	285.55	WAR MLPAST	在风机机器融设计规	5> 7.2.98-R.B-			
		地基承载力验算 >>	地	8条数力量算用5	EMALFARIATO	和中的主要的	我计概题》 6.	3.1条规定+		基础抗中切验算	0	地翻訳中日	NUMBER INLEVES	工程内电机增基硅设计	総括き 7.2.7条規定+			
		ALL REPORTED AND ALL RE	70	\$15天地¥英芝。	HERAGINE	和此的基础设计	観范 6.4.	1条规定+		地震地の発展した	30	24981	第二英名 (林上四角场	工程四电机组基础设计	現若2 もも2、6.4.2条統3	ł.	10 A	
		The second secon	10	HOLEN ME IN	ADVO/1004	CTVD #14 CT	NG+ 6.5.2.	19.5.3字典	æ.	0.011-0-02/01		149.013	O FIERMA				8208	
														-	如與產进方實》	Mill	• 62	◎ 内力

图 3 设计结果实时更新

图形区显示基础模型的信息,也可以显示基础内力,重力式基础和肋梁基础显示基础压力,桩基础显示桩的内力。如图 4 所示。

图4内力显示

3.设计

智慧风基软件设计模块依据规范对基础模型进行验算和配筋设计。对重力式基础和肋梁基础主要依据《陆上风电场工程 风电机组基础设计规范》进行计算。对桩基础主要依据《陆上风电场工程风电机组基础设计规范》和《建筑桩基技术规范》 进行计算。不同类型基础进行的验算见表1。

验算项	重力式基础	肋梁基础	承台桩基础
基础体型验算	~		
脱开面积验算	~	~	
地基承载力验算	~	~	~
沉降变形验算	~	~	~
倾斜变形验算	~	1	~
抗倾覆稳定验算	~	1	
抗滑稳定验算	~	1	
抗冲切验算	~	1	~
抗剪验算	~	1	~
软弱下卧层验算	~	1	~
地基动态刚度验算	~	1	
预应力锚栓笼验算	~	1	~
承台配筋计算	~		~
基础底板配筋计算		~	
肋梁配筋计算		1	
裂缝计算	~	~	~
疲劳计算	~	~	~
桩水平承载力验算			~
桩竖向承载力验算			~
桩抗拔承载力验算			~
桩身强度计算			~

表1 基础验算项

承台配筋进行精确配筋计算。承台的悬挑宽度进行分段,对每一段进行受弯配筋计算。重力式基础以单位弧长为一个计 算单元,按照承受均布荷载的悬臂构件进行计算。肋梁基础主梁内力按照悬臂梁计算,每个梁承受一个梁格范围内的力。承 台桩基础以最外圈三根桩所均分的的承台扇形面为计算单元,计算内力为受力最大单元的内力。

承台配筋和肋梁配筋可以输入钢筋信息进行校核,也可以根据内力进行配筋设计,进行快速选筋。基础钢筋按照类型分

类进行编辑,包括环向钢筋、径向钢筋、台柱钢筋、肋梁钢筋以及构造钢筋。调整配筋信息时,实时显示配筋结果,提示输 入钢筋是否满足配筋要求。

图 5 配筋设计

承台桩基础,桩的计算类型支持灌注桩、后注浆灌注桩、预制桩、嵌岩桩、扩底灌注桩。在承载力计算中考虑了液化土的影响。桩顶内力的计算提供了两种算法,可以使用《陆上风电场工程风电机组基础设计规范》7.5.6 节方法,也可以使用《建筑桩基技术规范》附录 C 中的考虑承台、基桩协同作工作和土的弹性抗力作用计算方法,使用附录方法进行计算时,输出详细的计算书,如图 6 所示。

图 6 桩基础附录 C 方法计算书

4.优化选型

风电基础设计的主要工作是根据风机大小和地质条件进行基础选型。实时显示设计结果便于查看模型是否满足规范要求, 方便基础选型。如何选择最优的模型需要工程师具有一定的经验,并且需要多次调整才可以选出满足要求的基础。智慧风基 软件提供了优化设计模块进行基础自动选型。根据输入的土层信息、荷载参数,设置选型条件,软件自动进行基础优化选型, 选出设定范围内的所有满足条件的基础,并给出所有方案的结果对比报告,包括基础的尺寸信息、土方量、混凝土量和钢筋 量。用户根据所有可选模型选择适合的模型。优化完成后,点击任何方案,可以查看当前基础模型的设计结果。

		○ 月間																	
	ISSE 🔳	り基出 助卓	8642 AE	645 N.B															
25	000 ±8		いた思生	() 編社光派祭	上の	Rossit II		RIS	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		● 运行分析 限型 运行分析 限元复核								
导航栏	÷	优化方案 建	比报告																
	-	条件设置					_	方案列表	1										
JD-1	基础设置	部位尺寸	最小值	最大唐	步长	可安	_	方案	方案信息		整体验算	截亚拉耳	配筋枝核	其他校核	股开面积	土方量	混凝土量	钥筋量	方式
	+===	日日中国の	3100	3100	0	12	-	1041 2	8 950061 120062	160083 4800C40T 2.03	2012		213 214	小田道	上来:0.0 転用:0.09 多温:0.0	1906.9	611.2	55913.3	自动选择
	Trein C	対象支援し	600	1000	200		-	/3余6 //	> 1:1050011-50002	100033-44000401-2-50	200.02 200.02	2012 2012	201 201	20-12 20-12	正常:0.0 新聞:0.07 分遣:0.0	2008.3	643.2	50400.1	E-0.025F
	风机简数	基础影理33	3500	5600	200	() ()	-	方案4 2	> 8:11100h1:600h2:	120053: 4400C40T: 2, 50	i i i i i i i i i i i i i i i i i i i	i de la calegaria de la calega	Ait	Ait	下意:0.0 标准:0.0 与调:0.0	2169.8	723.8	54411.5	自动法程
		基础半径和	9500	12600	500	1	(Babibician)	方敷5 >>	> 8:11600h1:600h2:	100053:44000407:2.50	通过	a id	au .	ii d	正常:0.0 积漏:0.0 多遇:0.0	2337.5	812.0	56899.7	自幼选择
	ALAH MALE						ENGINE ->	方案8 ×	3:12100h1 800h2	1000b3:4600C40T:2.50	a id	a id	通过	通过	正葉:0.0 振興:0.0 多遇:0.0	2655.8	965.6	63840.7	自动选择
	锡粒笼信用						验知项目	方素7 >	> B:12600h1:800h2:	100053:48000407:2.50	2 22	a id	通过	通过	正常:0.0 标演:0.0 多遇:0.0	3001.6	1080.9	70824.0	自动选择
	基础模型						☑ 至本形故												
	BUBSI-W						V BERACH												
	88.63114	☑ 相同半径	的基础只保留的	影小高度的方势	Ę.		 副品名林市 												
	优化设计	· · · · ·		-r1-			1/3 -												
	计算书																		
	接下的	ы																	
		hl]												
	接印名基 石4		R	-			-												
	预制基础							MRR 14	能大容 语交派有大器		生成当前方要计	N 45. jase	当的联系						
								Canton											
		機制。 1. 著編集團以。著稿半日時內提進官軍使以使弊。自時代以對預件以最小連結半日時僅大半日時代方案。每个半日以最小連結重要当最小連結重要進制符合条件的方案。 2. 古時里生殖的建築性時期最近重要的管理。 1. 計算是電子研究的工作是一個一個一個一個一個一個一個一個一個一個一個一個一個一個一個一個一個一個一個																	
		項目	_	结果		_		-			项目	_	4	2		_			
		基础计算短期	»	25.64	体型展定(内	上印电场工程	3电机组基础设计规范)	7.2.3条册	R座+ 基础装度: 1/2.60	(修理系统): 2.00	麻劳迪算	>>	# 3	地算用是《清書	E土结构设计规范》 6.7条规定。				1
		數开面积验算	>>	数开	的积累足 《月	11月1日日日日 11月1日日日日日日日日日日日日日日日日日日日日日日日日日日	3电机组基础设计规范)	6.1.3条根	R田・(正常:0.0 伝編:0.	01 参遇:0.0)	地基地态的	(信給算 >>	2 4	的建筑算法定	結上內电场工程向电机结基础设计规划	19 6.6.2×6.	6.3条规定。		1
		地基本教力拉	K >>	地秘	承受力检算部	纪 × 陆上冈北	A工程内电机组基础设计	規范2 6.3	3.1条规定。		软弱下酚原	验释	7 4	F在软粉下卧屋					
		沉降倾斜安形	時期 >>	704	交形验算表 3	2《陆上凤电场	工程风电机组基础设计共	880 6.4.1	1条規定。		联部任何通	验算	115	089.105en* (140	763. 351na*)				
		抗研療验算 >	>	抗转	限验算器足(精上风电场工作	里风电机组基础设计规范	\$0 6.5.2×	6.5.3条纸定。		联朗环由国	验算	1度	: 5399.612ee ⁴ 0	5425.0mm*)/2楔:6381.36mm* 09025.0m	a*)/3段:834	1.055en* (12425.0	54°)/	
		武術会社 >>> 武術会社 File は不可以中学校 # 15 2 5 1 5 1																	
																	(\$ 10)	时备达方案>>	关闭

图 7 优化设计

5.计算书输出

计算书模块进行计算书的显示和导出。设计完成后,在计算书模块生成完整的计算书,包括封面、目录、模型信息和设 计的全过程。计算书中,按照设计项分类显示设计结果,每项内容会输出总表,然后分项输出各工况的设计过程,设计过程 中的公式、计算参数都有详细的来源,方便用户对结果进行校验。计算书可以保存为可编辑的 word 格式。

•									风电器和计	別(新建工程・)					
の			(ALE 1.0.)	ノト 基础模型	Rest H	EticiRit BRM				SAR REDSAD 4		<u>)</u>			
导航栏	-	生成计算书	另存为					抗倾覆ス	力矩: <i>M_r</i> =	$(N_k + 6)$	$R_k = 35935.903$	$\times 10.6 = 380920.56$	8kN-m		ŕ
JC-1	基础设置 主用信息 风机的数 材料面性	 →3後日都数 →3後日都数 →3444次上居住思想 ▲4.2 十居信思想 ▲4.2 十居信報 ▲4.2 十居信報 ▲4.2 十居信報 ▲4.2 十居信報 ▲5.2 北京市政府 ▲6.2 北京市政府 ▲6	nan UKAN N				违 1	M _R /M _s 础设计规 1 基础扩	= 380920.5 范》 6. 5. 3 (滑验算	68/6839 条规定。	$5.685 = 5.569 \ge \gamma_{01}$	$\gamma_d = 1.1 \times 1.0 = 1.1$,满足《陆上风电场	5工程风电机组	
	锡栓笼信用	-7.1 正常工児 -7.2 松成工児 -7.3 公園研修工作							荷载	工况	滑动力 (kN)	抗滑力 (kN)	是否满足		
	基础模型	○ 8地基承载力验算 - 8.1 地基承载力1	∼ †ŒŒ						正常	工况	629.0	10776.661	满足	1	
	ncasi+ar	0.3 松城工兄 0.4 分易対策工1	2						极端	工況	1101.9	10782.691	满足	-	
	优化设计	 -9.1 原始土圧力i -9.2 正常工況 	1X						多遇地	震工况	688.7	10783. 321	满足	-	
	计算书	□ 10抗磷酸验算 □ 10抗磷酸验算							罕遇地	震工況	756, 9	10780, 771	満足	-	
	新工程	-10.2 税端工況 -10.3 多遇地裁工 -10.4 罕遇地裁工	2						6-77-107						
	1008基14	□ 11基础抗智信算 -11.1 正常工兄 -11.2 标道工兄					1	1.1 止滞	「上水						
	授制基础	-11.3 多透地震工 -11.4 军透地震工	足足					抗滑力:	$F_{R} = (N_{k}$	$+ G_k) \mu$	$a = 35922.203 \times 0.3$	= 10776.661 kN			
		 13編結抗関強者计算 13.1 間切束軟力 13.2 正型工業 13.3 影曲工業 13.4 多遇地震工 14.4 多遇地震工 14.1 我母切力社 14.2 正型工業 14.3 物曲工業 14.3 物曲工業 	计¥ 兄 祥					滑动力: $\gamma_0 F_s = 1$	$F_s = 629.0$ $1.1 \times 629.0 =$	kN = 691.9k	$N \leq \frac{1}{\gamma_d} F_R = \frac{1}{1.3} \times 10$	776.661 = 8289.73	9kN, 满足《陆上风	电场工程风电	
		□14.4 多透明與工 □15底板燈2時会计 □15.1 底面開2時	*				杉	组基础设	计规范》 6	. 5. 2条規	現定。				
		─ 15.2 底面配粉 ○ 16台柱配粉计算 ─ 16 台柱配粉计算 ─ 16.1 台柱正板面	网络行用				1	1.2 极端	江况						
								抗滑力:	$F_R = (N_k$	$+ G_k) \mu$	$a = 35942.303 \times 0.3$	= 10782.691 kN			
		-18.3 税損工名 -18.4 多透地税工	я.	,				滑动力:	$F_{s} = 1101$.9kN					-

图 8 计算书

6 施工图模块

施工图模块根据配筋结果直接绘制施工图,施工图中包括了承台底部配筋、承台项部配筋、剖面图、材料统计表。钢筋 统计表输出所有钢筋的统计数据,包括钢筋名称、钢筋简图、长度、重量等信息。施工图支持 DXF 文件的导出。

图9 施工图

名雅	编号	県国	憂号	单模长(m)	根数	总长(m)	总 重 (kg)
基础底部径向筋门	1	6803	\$28	8.803	104	915.46	4396.83
基础底存径向筋2	2	7415	\$25	8.848	104	920.21	3523.33
基础项审征向熵2	3	1388 /926 200 ⁰	\$25	10.124	104	1052.85	4031.16
基础顶都径向第1	4	9314 200 ⁰	\$28	10.124	104	1052.85	5056.69
基础边缘环向筋	5	10540	\$25	66.225	3	198.67	760.69
基础底部环向船1段	б	8040~10540	⊈28	50.517~66.225	11	642.08	3083.82
基础底部环向增2 授	7	5440~7830	\$28	35.437~49.260	13	550.53	2644.14
基础底部环向第3段	8	300-5490	\$28	19.478~34.495	17	458.77	2203.40
基础顶得环向第1 段	9	8084~10340	\$25	50.517~66.225	11	642.08	2458.40
基础项部环向船2 後	10	5499~7830	₩25	35.437~49.260	13	550.53	2107.89
基础项部环向船3段	11	3265490	\$25	19.478~34.495	17	458.77	1756.53
马發銀結 使	12	200 H 400 H 200	₩25	3.080	35	107.80	412.75
马霍佩第2段	13	200	\$25	4.200	30	126.00	482.43
马镫钢筋3段	14	200 ² 400 ² 200	₫ 25	5.320	25	133.00	509.23
马權領筋4段	15	200 8 400 8	\$25	6.440	20	128.80	493.15

钢筋统计表

图 10 钢筋统计表

7.有限元模型

上述基础设计过程是按照规范公式进行设计,基础要符合一定的假定。智慧风基软件提供了有限元功能,可以使用 SAP2000 结构分析软件进行有限元计算。有限元复核的过程不需要用户手动进行模型的设计与调整。在有限元模块中,点击 相应的功能按钮,进行 SAP2000 有限元软件的启动,自动生成模型、分析、提取有限元分析的结果,与规范值进行对比。

有限元模型是独立的 SAP2000 文件,可以在 SAP2000 软件中进行模型的查看。结果对比文件输出规范值与有限元解的对比,包括承台各段的内力对比、锚板的局部压力值结果。

图 11 有限元模型

•									- # ×
\$# I		52 DIQUE 45	822 FIE						*
	50 E			一般の主義の			REDSAP		
	853				 2543/01/19			有限无数技	
导航栏	-	生成计算书	另存为						ŕ
30-1	基础设置	■ 计算书 基础底部径向第1段 基础底部径向第2段							
	土居镇意	基础区部沿向第3股 基础区部环向第1股 基础区部环向第2股							
	凡机荷载	基础区部开向第3份 基础质制径向第3份 基础质制径向第2份						多是地域里工系写会考想(ast-m):	
	村料属性	基础质量径向第3号 基础质量环向第1号 基础质量环向第2号						Wa (169/295)	
	福祉差信息	—基础阶级升同第3日 —上辐板下混凝土最大 —下辐板上混凝土最大	压应力 压应力					#-3(2(57)) #+60(154)	
	운데(있고) mittill by								
	m(210)11							W=456(453)	
	+84							#rational	
	BIB							手毛地里 工术学业(Num-m):	
	BRAME DE							ye=150(4370)	
	質別基础								
								38.73 FERVIAL REALS	
								-1000	

图 12 结果对比

8.总结

WindPower 智慧风基软件实时显示设计结果可以快速确定设计结果,智能优化设计可以进行基础的选型和结果对比,快速选型,有效提升工作效率。报告书和施工图是可以交付的文件,报告书输出图、文、表并茂的计算书,可以查看基础设计的全过程,施工图按照行业习惯进行绘制,可直接使用。有限元模块能得到有限元解,是对规范算法的补充和校验。

WindPower 智慧风基软件实现风机基础设计的全过程,流程化的操作简单易学,从设计输入到设计输出提供了不同的方式提升建模和设计的效率,是风机基础设计的有利帮手。欢迎广大工程师与筑信达公司及各区域代理商联系试用!

ETABS 与其它软件进行指标对比时的注意事项

筑信达 刘慧璇

随着多/超高层、多塔等复杂项目的广泛运用,以及计算机技术的革新,越来越多的项目需要用多款软件进行二次校核。 然而,由于不同的软件有不同的计算假定,模型的计算参数设置方法也存在较大的差异,工程师进行模型对比时经常遇到各 式各样的问题。本文将简要梳理指标对比的基本思路,从质量、周期、层剪力、其它指标四个方面进行整理,为大家提供一 些解决方案。

1. 质量对比

一般模型转换完成后,首先需要对比模型质量。

如图 1-图 4 所示,可以先对比恒载、活载下的基底反力,确定结构质量大体上是否吻合,判断是否存在恒载或活载的丢 失。此外,可以查看各层质量,用户常遇到的问题是"顶层质量差异较大",这是因为 ETABS 是将上下各半层的结构质量凝 聚到本层,而国内常用的 PKPM 或 YJK 软件是将本层质量凝聚到层标高处。所以对于顶层,ETABS 的顶层质量通常为上述 软件质量的一半,但总质量应该相当。

筑信达 DC 的指标对比报告可以直接提供如图 5 所示的对比结果,供大家参考。

Units: A Filter: N	As Noted I	Hidden Columns: N	o Sort N	one Base	Base Reactions			
	Output Case	Case Type	FX kN	FY kN	FZ kN			
•	DL	LinStatic	0	0	57436.1308			
	LL	LinStatic	0	0	19927.8382			
ť	亘载 57436/3	9.8=5861t	活载 19	9928/9.8=20	033t			

图 2 ETABS 中恒/活基底反力

Units: As Noted Filter: None		Hidden Columns: No	Sort: N	one	Mass Summary by Stor		
	Story	UX kg	UY kg	UZ kg			
•	Story6	1341242.13	1341242.13		0		
	Story5	1000035.28	1000035.28		0		
	Story4	1001383.15	1001383.15		0		
	Story3	1001383.15	1001383.15		0		
	Story2	1001383.15	1001383.15		0		
	Story1	1398730.69	1398730.69		0		
	Base	128734.67	128734.67		0		

图 3 ETABS 中各层质量

模型一 YJK模型

图 1 ETABS 中质量的查看

0K/25	恒载(t)	活载(t)	楼层(t)	质量比	恒载(t)	活载(t)	楼层(t)	质量比	楼层(t)
Story6	1154.7	274.5	1429.2	1.439	/	/	1341.24	1.341	6.15%
Story5	911.1	82.0	993.1	1.0	1	1	1000.04	0.999	0.7%
Story4	911.1	82.0	993.1	1.0	/	1	1001.38	1.0	0.83%
Story3	911.1	82.0	993.1	1.0	/	/	1001.38	1.0	0.83%
Story2	911.1	82.0	993.1	0.705	/	1	1001.38	0.716	0.83%
Story1	1015.9	393.7	1409.6	1.0	/	/	1398.73	1.0	0.77%
总计	5815.0	996.2	6811.2	1	7	1	6744.16	/	0.98%

图 4 YJK 中质量的查看

图 5 筑信达 DC 输出的质量对比结果

模型二 ETABS模型

误差(%)

当各层质量都存在偏差时,可以从以下几点检查模型:

①YJK 或 PKPM 中是否勾选了自动计算现浇楼板自重? ETABS 中默认在恒载中考虑了构件自重,如图 7,结构自重由材 料密度和构件体积自动计算。

名称 共型 見型 東数 DL 恒荷载 1 荷载采用有限元方法 DL 恒荷载 1

②通过【分析】>【检查模型】判断 ETABS 模型中是否存在 N 边形膜单元 (N≥5) 剖分导致的荷载丢失。若存在荷载丢 失,可通过【选择】>【标签】>【壳标签】定位单元所处的位置,手动将其分割为三/四边形。

图 8 检查模型

③ETABS 中默认会通过端部偏移扣除梁柱重叠区的构件自重,但其它构件重叠部分的自重无法扣除,而 YJK 中可以勾 选扣除重叠质量,这可能导致 ETABS 模型的质量偏大一些。

2. 周期对比

当模型质量吻合,可以对比两个模型的周期结果,如下图所示:

(Z向扭转质量系数只在强制刚性板下有意义,对于非强制刚性板下的计算结果仅供参考) 編 中号 X向平动质量系数%(sum) Y向平动质量系数%(sum) Z向扭转质量系数%(sum)

民里号	XIP半动质重系数	%(sum) Y回半到质	重杀銰%(sum) Z
1	70.41(70.41)	0.00(0.00)	1.00(1.00)
2	0.10(70.52)	65.82(65.82)	5.63(6.63)
3	0.77(71.28)	6.58(72.40)	65.39(72.02)
4	18.92(90.20)	0.00(72.40)	0.20(72.22)
5	0.01(90.21)	19.40(91.80)	0.82(73.05)
6	0.14(90.35)	0.45(92.25)	19.01(92.06)
7	7.09(97.44)	0.01(92.25)	0.01(92.07)
8	0.02(97.46)	5.83(98.08)	0.00(92.07)
9	1.70(99.17)	0.02(98.11)	0.25(92.32)
10	0.34(99.51)	0.02(98.13)	5.60(97.93)
11	0.34(99.84)	0.16(98.29)	0.00(97.93)
12	0.03(99.87)	1.37(99.66)	0.09(98.01)
13	0.06(99.93)	0.00(99.66)	1.62(99.64)
14	0.06(99.99)	0.00(99.66)	0.00(99.64)
15	0.00(99.99)	0.29(99.95)	0.01(99.65)
X向平i	功振型参与质量系参	成总计: 99.99%	
Veta STZ =	NUCLEAR AND ADDRESS OF	00.059/	

振型号	} 周期	转角	平动系数(X+Y)	扭转系数(Z)
1	0.6063	0.41	0.99(0.99+0.00)	0.01
2	0.3856	92.40	0.92(0.00+0.92)	0.08
3	0.3391	69.83	0.10(0.01+0.08)	0.90
4	0.1510	0.36	0.98(0.98+0.00)	0.02
5	0.0983	91.27	0.98(0.00+0.98)	0.02
6	0.0884	43.37	0.04(0.02+0.02)	0.96
7	0.0734	1.07	0.97(0.97+0.00)	0.03
8	0.0506	91.45	0.99(0.00+0.99)	0.01
9	0.0474	0.62	0.95(0.95+0.00)	0.05
10	0.0453	27.11	0.05(0.04+0.01)	0.95
11	0.0345	0.23	0.97(0.86+0.11)	0.03
12	0.0340	91.01	0.99(0.11+0.89)	0.01
13	0.0305	1.59	0.04(0.03+0.01)	0.96
14	0.0282	179.51	0.96(0.96+0.00)	0.04
15	0.0255	89.20	0.98(0.00+0.98)	0.02

图9YJK 中周期结果的查看

Units: As Noted Hidden Columns: No Sort: None 模态质量参与系数 Modal Participating Mass Ratios															
Filter	: None														
	Case	Mode	Period sec	ux X向平动	UY Y向平动	UZ	SumUX	SumUY	SumUZ	RX	RY	RZ Z向扭转	SumRX	SumRY	SumRZ
Þ	Modal	1	0.618	0.7039	1.922E-06	0	0.7039	1.922E-06	0	1.019E-05	0.3126	0.0136	1.019E-05	0.3126	0.0136
	Modal	2	0.386	0.0024	0.5876	0	0.7062	0.5876	0	0.2596	0.0011	0.1384	0.2596	0.3137	0.152
	Modal	3	0.347	0.0097	0.1387	0	0.7159	0.7264	0	0.0482	0.0045	0.5774	0.3079	0.3182	0.7294
	Modal	4	0.155	0.1864	0.0001	0	0.9024	0.7265	0	0.0004	0.4243	0.0058	0.3083	0.7425	0.7352
	Modal	5	0.106	0.0021	0.1484	0	0.9045	0.8749	0	0.3612	0.0044	0.0363	0.6695	0.7469	0.7715
	Modal	6	0.096	0.0026	0.0458	0	0.9071	0.9207	0	0.1095	0.0057	0.1467	0.779	0.7527	0.9182
	Modal	7	0.083	0.0563	0.0013	0	0.9634	0.922	0	0.0034	0.1398	0.0029	0.7824	0.8925	0.921
	Modal	8	0.076	0.0037	1.877E-05	0	0.9672	0.922	0	0.0004	0.0099	5.395E-06	0.7828	0.9023	0.921
	Modal	9	0.065	0.0053	0.0338	0	0.9724	0.9558	0	0.0896	0.0128	0.0088	0.8724	0.9152	0.9299
	Modal	10	0.061	0.0006	0.0026	0	0.9731	0.9584	0	0.0055	0.0022	0.0061	0.8779	0.9174	0.936
	Modal	11	0.06	0.0099	3.26E-05	0	0.9829	0.9584	0	0.0001	0.0324	0.0059	0.8781	0.9498	0.9419
	Modal	12	0.057	0.0053	0.0177	0	0.9882	0.9761	0	0.0487	0.0139	0.0236	0.9268	0.9637	0.9655
	Modal	13	0.051	0.0028	0.004	0	0.991	0.9802	0	0.0141	0.0085	0.0012	0.9409	0.9722	0.9667
	Modal	14	0.049	0.0001	0.0012	0	0.9911	0.9813	0	0.0034	0.0005	0.0006	0.9443	0.9726	0.9673
	Modal	15	0.047	0.0017	0.0007	0	0.9928	0.982	0	0.002	0.0051	0.0005	0.9463	0.9777	0.9679
							累计质量	参与系数						累计质	量参与系数

累计质量参与系数

Units: As Noted Filter: None Case		Hidden Columns: N	lo Sort: N	Sort: None		Modal Direction Factors 振型方向系数					
	Case	Mode	Period sec	ux 平动	UY 系数	UZ	RZ 扭转系数	UX*	UY*	UZ*	RZ*
•	Modal	1	0.618	0.983	0	0	0.017	0.981	0	0	0.019
	Modal	2	0.386	0.003	0.828	0	0.169	0.003	0.807	0	0.19
	Modal	3	0.347	0.014	0.181	0	0.806	0.013	0.191	0	0.795

周期相差较大时,具体从下几点检查模型。

2.1 梁柱节点刚域

	框架指定 - 端部偏移	
☑ 短墙肢自动加密		
弹性板荷载计算方式 平面导荷 ▼ 膜单元类型 经典膜元 (QA4) ▼	偏移选项 ⑥ 自动计算	导出选项 一
 ✓ 考虑梁端刚域 ✓ 考虑柱端刚域 ✓ 墙梁跨中节点作为刚性楼板从节点 		機型用途 ● 弹性機型 ○ 弹塑性描处理模型
🔲 结构计算时考虑楼梯刚度	上 9斋mm	转换选项
📝 梁与弹性板变形协调	J 端	□ 跨高比小于 5.0 🔅 (0代表无限值)的连梁转为墙单元
🥅 弹性板与梁协调时考虑梁向下相对偏移		□ 跨高比大于 0.0 ◆ (0代表无限值)的墙梁转为梁单元
🔲 门式刚架按平面结构方式计算	NII或系数 0.5	框架端部偏移及刚域设置 🖸 设置梁 🔽 设置柱
图 11 YJK 中梁柱刚域的设置	图 12 ETABS 中刚域的设置	图 13 筑信达 DC 转换模型时刚域的设置

采用筑信达 DC 转换模型时需注意梁柱节点刚域的设置,勾选后将在 ETABS 中对相应的构件设置刚域系数 0.5,即节点 刚性范围为构件端部偏移长度的 50%。YJK 或 PKPM 中刚域范围按《高层建筑混凝土结构技术规程》5.3.4 条计算,一般情况 下计算得到的范围与刚域系数 0.5 接近,两者差异在可接受范围内。

2.2 刚性隔板 or 准刚性隔板

采用筑信达 DC 转换模型时注意设置隔板属性。采用刚性隔板时,隔板范围内的节点无相对平动位移,与 YJK/PKPM 中的"全楼采用强制刚性楼板假定"一致。采用准刚性隔板时,则不会约束楼板变形,只用于施加风荷载和考虑地震作用的偶然偏心,与 YJK/PKPM 中"不强制采用刚性楼板假定"一致。当 YJK/PKPM 中选择"整体指标计算采用强刚,其它计算非强刚"时,对应着两种 ETABS 模型,若需对比整体指标,采用刚性隔板,若需对比构件设计结果,采用准刚性隔板。

2.3 剪力墙建模

对于框剪结构,需注意剖分墙体,不剖分会导致结构偏刚,周期偏小。一般情况下,两个对比模型按相同的剖分尺寸设置即可,筑信达 DC 转换模型的默认设置也是如此。但是由于不同软件模拟构件的方式不同,我们发现对于剪力墙布置较多的模型,尤其是剪力墙结构,在相同的剖分尺寸下,ETABS 与 YJK/PKPM 的模型周期很难吻合。由于 ETABS 对壳的剖分尺 寸较 YJK/PKPM 更敏感,可酌情对 ETABS 的剖分尺寸进行调整,使结果一致。

其次是连梁的模拟,建议两个对比模型按相同的跨高比控制连梁的模拟 方式,筑信达 DC 中的模型转换参数设置如图 14 所示。对于壳单元模拟的连 梁,需手动在 ETABS 中完成细分,否则会导致结构偏刚,具体操作为:通过 连梁标签选中所有连梁,对其指定剖分单元数量,如图 15 所示。对于线单元 模拟的连梁,为了保证线单元与面单元交点处的转动刚度,需布置埋设梁,释 放其轴力,仅提供抗弯刚度,埋设梁参数如图 16 所示。筑信达 DC 转换的模 型会自动添加埋设梁,无需用户操作。

图 14 筑信达 DC 中的连梁转换选项

关于剪力墙建模更详尽的内容可参考"ETABS中剪力墙建模与剖分常见问题剖析"。

2.4 预设 P-delta

根据《高层建筑混凝土结构技术规程》5.4.2条,当结构刚重比不满足要求时, 需考虑重力二阶效应的不利影响, ETABS 中可以通过【定义】>【P-delta 选项】实 现。对于需要预设 P-delta 的结构,目前筑信达 DC 转换的模型不会自动设置预设 P-delta 选项,其它接口转换得到的模型也经常遇到设置有误的情况,使得 ETABS 模型的计算结果偏刚。建议用户仔细检查 ETABS 中是否按需设置了预设 P-delta, 其参数设置是否准确,如图17所示。

总之,对比模型周期时先观察两个模型的主振型是否一致? 是否都是 X 向平 动或 Y 向平动? 相同振型下的周期是否吻合? 若两个平动方向均偏柔或偏刚,则 可重点检查梁柱刚域、隔板属性和预设 P-delta; 若模型在某一平动方向存在差异, 另一方向吻合,很有可能是框剪、框筒等带剪力墙的模型,可重点观察存在差异的 方向上剪力墙建模情况,剪力墙是否剖分?连梁是否细分?埋设梁是否设置妥 当?

E 预设 P-Delta 选项 × 自动方法 〇无 ○ 基于质量 (非迭代) ● 基于荷载(迭代) 荷载工况 荷载模式 比例系数 ~ 1.5 Live 13 添加 修改 删除 相对收敛容差 0.0001 取消 确定 图 17 预设 P-delta 选项

此外需要注意的是,ETABS中只存在一个模型,YJK/PKPM中则可能会存在多个模型,结果输出时会提供非强刚/强刚、 连梁刚度折减/不折减多种情况下的指标,对比时注意结构指标的计算假定是否一致。

3. 层剪力

一般来说,质量和周期都能对上后,地震作用下的结构响应该是吻合的,首先可以对比基底剪力,再对比层剪力。 若基底剪力对比不上,可从以下几点入手检查:

① 地震参数

ETABS 中地震参数主要在反应谱函数中设置,如图 18, 需仔细检查参数设置是否正确。

此外,检查模态阻尼的设置,抗震模型的模态阻尼主要在 两个地方体现:材料定义中的材料阻尼属性(图 19)和反应 谱工况中的模态阻尼(图 20),用户需根据实际情况设置,建 议两个地方不要同时设置,否则程序会叠加考虑,更详细的内 容可参考"反应谱分析时结构的模态阻尼的来源"。

EQX

图 18 反应谱函数

图 20 反应谱工况中的模态阻尼

图 19 材料阻尼

②模态累计质量参与系数

检查 ETABS 中模态累计质量参与系数是否达到规范要求的 90%,若未达到,会使 ETABS 地震作用偏小,此时需调整模态工况。建议采用利兹向量法,施加需激发的加速度荷载,可更高效地获得质量参与系数,模态数量可以取"楼层数*加速度荷载数量",一般为 3 倍楼层数。

若基底剪力吻合,但部分层剪力对比不上,可从以下几点入手检查:

①地震作用调整系数

检查 YJK/PKPM 中是否设置了地震作用放大系数? 模型是否需要考虑剪重比调整系数? ETABS 并不会自动调整地震作用,若需考虑,应在反应谱工况中手动调整比例系数。

图 21 YJK 中的地震作用放大系数

图 22 YJK 中的剪重比调整

常	规数据 名称		EX	
	类型		Response Spectrum	~
	质量源		Previous (MsSrc1)	
	分析模型		Default	
施	加荷载	比例系	数=重力加速度*地	也震作用调整系数
	荷载类型	荷载名称	函数	比例系数
	Acceleration	U1	Func1	9806.65

图 23 反应谱工况中的比例系数

②层剪力统计方式导致的差异

对于有跃层构件、带有地下室或基础错层的 结构,ETABS 输出层剪力时仅统计属于本层、且 落在楼面标高处的构件内力,统计方式与其它软 件存在差异。

如图 24 所示的框架结构 A,首层部分构件 未落在 base 处,ETABS 在统计 base 层剪力时无 法考虑此类构件的内力,导致 base 层剪力异常, 这时通过截面切割可以得到合理的结果。

对于图 25 所示带有一层地下室、存在跃层 构件的框架结构 B,模型中用施加在地下室顶板 周边的点弹簧模拟土体约束。由于 ETABS 统计 层剪力时不考虑弹簧反力,统计基底反力时考虑 所有支座(包括弹簧)反力,可以从图 26 中看 见首层和基底的剪力不一致。此外,由于构件只 能属于一个楼层,图示模型中跃层构件属于地上 二层(即 Story3),但跃层构件的底部节点未落在 Story2 楼面处,导致统计楼层力时跃层构件的内 力丢失,水平地震作用下统计的 Story2 和 Story3 轴力不为零,层倾覆力矩的统计也会受到轴力影 响。因此,建议将跃层构件在楼面处打断。

图 24 基础错层的结构 A

Ur	its: As Noted	Hidden Columns: N	o Sort: N	lone	Base Reactions	
Fil	ter: None					
	Output Cas	e Case Type	Step Type	FX kN	FY kN	FZ kN
▶	EX	LinRespSpec	Max	3967.8824	37.0856	4.082E-06

Units: As Noted Hidden Columns: No Sort: None Filter: None

	Story	Output Case	Case Type	Step Type	Location	P kN	VX kN	VY kN	T kN-m	MX kN-m	MY kN-m
•	STORY6	EX	LinRespSpec	Max	Bottom	0	1257.2505	21.9875	48101.6416	92.3474	5280.4523
	STORY5	EX	LinRespSpec	Max	Bottom	1.035E-05	2224.616	13.2343	85092.3869	83.4457	14515.9739
	STORY4	EX	LinRespSpec	Max	Bottom	2.661E-06	2986.7651	21.0806	114346.4866	64.809	26753.4412
	STORY3	EX	LinRespSpec	Max	Bottom	50.713	3016.9487	28.5682	115598.3743	1880.5976	38565.1897
	STORY2	EX	LinRespSpec	Max	Bottom	50.713	3263.5245	17.6561	124999.4739	1862.9365	54565.5839
	STORY1	EX	LinRespSpec	Max	Bottom	4.082E-06	3718.0141	33.7311	142354.1957	152.0232	71081.8236

图 26 框架结构 B 的剪力结果

Units: A Filter: N	As Noted H Ione	lidden Columns: N	No Sort: N	one		Story Forces						
	Story	Output Case	Case Type	Step Туре	Location	P kN	VX kN	VY kN	T kN-m	MX kN-m	MY kN-m	
•	STORY6	EX	LinRespSpec	Max	Bottom	0	1262.8382	27.0025	48594.7565	113.4104	5303.9204	
	STORY5	EX	LinRespSpec	Max	Bottom	1.702E-05	2231.9012	19.57	85457.6183	81.8011	14568.8285	
	STORY4	EX	LinRespSpec	Max	Bottom	3.25E-05	2993.3411	24.5961	114682.1031	79.8007	26827.6922	
	STORY3	EX	LinRespSpec	Max	Bottom	3.278E-05	3567.5287	49.7779	136614.5669	163.6363	41324.5698	
	STORY2	EX	LinRespSpec	Max	Bottom	3.297E-05	3843.1416	25.3434	146837.3967	131.8045	60365.2428	
	STORY1	EX	LinRespSpec	Max	Bottom	3.363E-05	3724.1134	55.6601	143382.768	168.9978	71143.3	

图 27 框架结构 B 中跃层构件打断后的楼层力结果

用户对比时需注意核对两款软件的统计范围。对于特殊情况,可通过截面切割统计层剪力。

4. 其它指标

当对比模型的基底剪力、层剪力都吻合较好时,可以进行其它指标的对比。

4.1 位移结果

对于风荷载下的位移结果,由于 YJK/PKPM 与 ETABS 考虑 风荷载的方式不一致,两款软件计算得到的位移结果存在一定差 异。如图 28 所示,YJK/PKPM 中计算每层风荷载时,取的是楼 面标高处的风压高度变化系数,计算高度为本层层高,而 ETABS 计算每层风荷载时,计算高度为上下各半层高度之和,并在计算 高度范围内的十等分处精确计算风压高度变化系数,累加得到本 层风荷载。

对于地震作用下的位移结果(图 29), ETABS 中反应谱工况 若设置了偶然偏心,便会输出正/负/无偶然偏心下层间位移角的 包络结果,对于扭转位移比,程序会分别给出正偶然偏心、负偶 然偏心和无偶然偏心的规定水平力下的结果。根据《高层建筑混 凝土结构技术规程》3.7.3 条,层间位移角可不考虑偶然偏心的影 响,因此,需在 ETABS 中额外定义一个不考虑偶然偏心的反应 谱工况,用于统计位移角,如图 30-31 所示。目前筑信达 DC 实 现了国标多模型的处理,用户也可以借助筑信达 DC 生成模型和 统计指标。

ANALYSIS RESULTS (3 of 47 tables selected)
Run Information
🖻 🗹 Joint Output
Table: Joint Displacements
Table: Joint Displacements - Absolute
Table: Joint Drifts
Table: Diaphragm Max Over Avg Drifts
I Table: Story Drifts 层间位移角
—☑ Table: Story Max Over Avg Displacements 楼层位移比
☑ Table: Story Max Over Avg Drifts 层间位移比
4 4 4

图 29 ETABS 输出的位移指标

=== 工況13 === X- 偶然偏心地震作用下的楼层最大位移		= I	况17 ===X	方向地震	作用下的	的楼层最大	立移		
Floor Tower Jmax Max-(X) Ave-(X) h JmaxD Max-Dx Ave-Dx Max-Dx/h DxR/Dx Ratio_AX	Floo	or T	ower Jmax JmaxD N	Max Max-Dx	-(X) Av Ave-D	e-(X) ł x Max-D	ı lx∕h DxF	/Dx Ratio_/	АХ
6 1 6000001 13.03 12.07 3600	6	1	6000001	12.83	12.01	3600			
6000001 2.37 2.20 1/1516 8.48% 1.00			6000024	2.34	2.19	1/1539	8.58%	1.00	
5 1 5000001 10.69 9.90 3600	5	1	5000022	10.53	9.85	3600			
5000022 2.60 2.41 1/1387 0.75% 0.83			5000022	2.56	2.39	1/1408	0.75%	0.84	
4 1 400001 8.14 7.54 <u>3600</u>	4	1	4000001	8.01	7.50	3600			
4000001 2.61 2.42 1/1377 6.53% 0.87			4000022	2.57	2.41	1/1398	6.53%	0.87	
3 1 3000022 5.56 5.14 3600	3	1	3000022	5.47	5.12	3600			
3000022 2.44 2.27 1/1474 20.30% 0.80			3000001	2.41	2.26	1/1496	20.31%	0.80	
2 1 2000022 3.13 2.89 3600	2	1	2000022	3.08	2.88	3600			
2000001 1.95 1.81 1/1847 50.55% 0.64	_		2000022	192	1.80	1/1876	50 59%	0.64	
1 1 1000001 1.19 1.09 4400	1	1	1000001	1 17	1.09	4400	22.0070		
1000001 1.19 1.09 1/3700 100.00% 0.38	Ľ.	ľ	1000001	1.17	1.09	1/3764	100.00%	0.38	

图 30 YJK 输出的层间位移角

Units	: As Noted	Hidden Columns: N	lo Sort: (Output Case ASC		Story Dr	ifts		
Filter:	([Direction] = 'X'))							
	Story	Output Case	Case Type	Step Type	Step Number	Direction	Drift	Drift/	Label
•	Story6	EX	LinRespSpec	Max		х	0.000659	1/1518	7
	Story5	EX	LinRespSpec	Max		х	0.000734	1/1362	8
	Story4	EX	LinRespSpec	Max		х	0.000728	1/1373	3
	Story3	EX	LinRespSpec	Max考虑	偶然偏心的工	况 _X	0.000679	1/1472	8
	Story2	EX	LinRespSpec	Max		х	0.000536	1/1866	4
	Story1	EX	LinRespSpec	Max		х	0.000286	1/3498	4
	Story6	EX-0	LinRespSpec	Max		х	0.000648	1/1543	7
	Story5	EX-0	LinRespSpec	Max		х	0.000724	1/1382	8
	Story4	EX-0	LinRespSpec	Max 未考	虑偶然偏心的	b工况 _X	0.000717	1/1394	3
	Story3	EX-0	LinRespSpec	Max		х	0.000669	1/1494	8
	Story2	EX-0	LinRespSpec	Max		х	0.000527	1/1896	4
	Story1	EX-0	LinRespSpec	Max		х	0.000281	1/3560	4

图 31 ETABS 输出的层间位移角

此外,由于 ETABS 基于本层所有节点的位移角统计层间位移角,对于如图 32 所示有腰桁架等特殊构件的复杂结构, ETABS 统计的最大层间位移角有可能位于桁架部位(可通过 Story Drifts 中输出的节点标签判断),而不是来自竖向构件,对 于这种情况,可手动统计竖向构件的层间位移角,具体操作可参考"<u>如何统计部分构件的层间位移角</u>"。

图 32 有加强层的结构

14

4.2 其它指标

ETABS 统计框架承担倾覆力矩和框架承担剪力时,默认根据单元类型统计内力,不考虑斜柱,竖向构件中,线单元的内 力归为"框架承担部分",面单元的内力归为"剪力墙承担部分",因此对于框架单元模拟的剪力墙端柱也会统计在"框架承 担部分"范围内,如图 33 所示。根据《高层建筑混凝土结构技术规程》,端柱应归为"剪力墙承担部分",因此对于带有端柱 的结构,需要通过截面切割手动统计指标。

	As Noted I	Hidden Columns: N	lo Sort: N	lone	F	rame Shear Ratios 문 녀 k	s In Dual Systems A	And Modifiers	
	Story	Output Case	Case Type	Step Type	Segment	Direction	,山口)作二末伊 Vo kN	Vf kN	Vf' kN
	Story1	EX	LinRespSpec		1	х	29465.4394	6688.5447	6688.5447
		Units: A	s Noted H	idden Columns: N	lo Sort: N	lone	Section	on Cut Forces - Ar	nalysis
* * * * * * *		Tinter. ([Sectionical) - cor)	基于	首层框架对	象(含嘴枉)统计的男:	<u>ታ</u>
			SectionCut	Output Case	Case Type	Step Type	F1 kN	F2 kN	F3 kN
			col	EX	LinRespSpec	Max	6688.5447	1560.4587	5326.6297
		Units: As	s Noted Hi	idden Columns: N	o Sort: N	one	Sectio	n Cut Forces - An	alysis
* * * * * * *		Filter: No	one			基于首	层框架柱统计	†的剪力	
			SectionCut	Output Case	Case Type	Step Type	F1 kN	F2 kN	F3 kN
		•	Frame	EX	LinRespSpec	Max	4888.2204	1236.5768	1312.1294

图 33 有端柱的框剪结构

5. 结语

采用不同的软件进行模型指标对比时,要求工程师掌握两款软件的计算假定,把控对比模型的参数设置是否一致。但由 于大家往往采用转换接口一键生成指标对比模型,并不了解模型的建模参数,常遇到指标对比不吻合的情况。影响模型结果 差异的因素众多,首先需确保两个模型的总质量一致,然后对比周期,保证模型刚度一致,接着查看荷载工况下的基底剪力、 层剪力,判断荷载施加是否存在差异,最后对比其它指标,检查结果差异是否由各软件不同的统计方式导致。

多款软件指标对比时,要根据建筑结构的实际情况,具体问题具体分析。本文仅提供指标对比时的大体思路和注意事项, 供广大工程师参考。

参考资料

[1] GB50010-2010(2015 版) 混凝土结构设计规范[S]. 北京:中国建筑工业出版社,2015.
[2] JGJ 3-2010 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社,2010.

SAFE

基于 SAFE 的欧标冲切设计概述及与国标的异同

筑信达 郑 翔

国内工程师在进行海外项目设计时,运用最频繁的外标是美标和欧标。关于美标的冲切计算已经在往期的《筑信达技术 通讯》介绍过,但基于欧标冲切计算的相关内容较少。因此,本文将结合 SAFE 软件介绍欧标 EN 1992-1-1 对非预应力构件 冲切设计的相关规定,并分析与美标、国标的异同。最后,介绍 SAFE 进行欧标冲切计算时的设置和结果解读。

1.冲切计算流程

根据 EN 1992-1-1 第 6.4.3 条,冲切设计需要分别验算柱边位置和基本控制周长 u1 位置;当需配置抗冲切钢筋时,还需要另外验算不需配置抗冲切钢筋的周长 uout,ef 位置。

- (1) 抗冲切验算时,无论是有筋冲切还是无筋冲切,在柱边或加载区域的最大冲切剪应力v_{ed}应满足下式要求:
 - v_{Ed} < v_{Rd,max}
 式中: v_{Ed}为柱边最大冲切剪应力(参考本文1.1和1.4节);
 v_{Rd,max}为控制截面的最大抗冲切承载力设计值,由执行欧标国家的国家附录确定,建议值取0.5vf_{cd}(EC2 式 6.53 注释);
 - $\nu = 0.6 \times (1 f_{ck}/250) \text{ (EC2 } \text{ cm} 6.6\text{N})$;
 - fcd为混凝土抗压强度设计值;
- (2) 当 $v_{Ed} > v_{Rd,max}$ 时,冲切验算失败,截面尺寸需增大;
- (3) 当 $v_{Ed} < v_{Rd,c}$ 时,无需配置抗冲切钢筋;
 - 式中: v_{Rd,c}为无筋抗冲切承载力(参考本文1.2节);
- (4) 当v_{Ed} ≥ v_{Rd,c}时, 需配置抗冲切钢筋, 此时承载力需满足v_{Ed} < v_{Rd,cs};
 式中: v_{Rd,cs}为有筋抗冲切承载力(参考本文1.3节);

注意: (1)和(2)的*v_{Ed}*是指在柱边或加载区域的最大冲切剪应力; (3)和(4)的*v_{Ed}*是指在基本控制周长处的最大冲切剪应力。

以上冲切计算的基本流程可总结为下图:

1.1 最大冲切剪应力v_{Ed}

根据 EN 1992-1-1 第 6.4.3 条第(3)款: 当相对于控制周长支承反力存在偏心时,无筋或有筋冲切的最大冲切剪应力均按下式计算:

$$v_{Ed} = \beta \frac{V_{Ed}}{u_i d} \quad (\text{EC2 } \vec{\texttt{x}} \ 6.38)$$

式中: β—弯矩影响系数(无弯矩时β = 1);系数β与冲切力平面形状和作用位置有关,是考虑不平衡弯矩对最大冲切 剪应力的不利影响(参考本文第3节)

V_{Ed}—冲切力

v_{Ed}—控制周长处冲切剪应力

ui---控制周长(根据不同验算位置取不同值,不一定为u1)

d—板截面有效高度

1.2 无筋抗冲切承载力v_{Rd,c}

根据 EN 1992-1-1 第 6.4.4 条第(1)款,无筋抗冲切承载力v_{Rd,c}按下式计算:

$$v_{Rd,c} = \left[C_{Rd,c} k \left(100 \rho_l f_{ck} \right)^{1/3} + k_1 \sigma_{cp} \right] \ge \left[v_{\min} + k_1 \sigma_{cp} \right] \quad (\text{EC2 } \vec{\mathbf{x}} \ 6.47)$$

其中:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0, \quad \rho_l = \sqrt{\rho_{ly}\rho_{lz}} \le 0.02, \quad \sigma_{cp} = \left(\sigma_{cy} + \sigma_{cz}\right)/2, \quad \nu_{\min} = 0.035k^{3/2}f_{ck}^{1/2}$$

式中: f_{ck}—抗压强度特征值 (MPa);

d ─板的有效高度 (mm);

 ρ_{ly} 、 ρ_{lz} —y 和 z 方向的纵向受拉钢筋配筋率。在 SAFE 中当设计板带 Layer A 和 Layer B 彼此正交时,取两者平

均值,当设计板带不是彼此正交时,取为0,此时 $v_{Rd,c} = v_{\min} + k_1 \sigma_{cp}$ 。

 σ_{cv} 、 σ_{cz} —y和z方向上临界截面的混凝土正应力(MPa,受压为正),偏保守时可取0;

 $C_{Rd.c} = 0.18/\gamma_c$

 $k_1 = 0.1$

1.3 有筋抗冲切承载力v_{Rd,cs}

当板或基础配置抗冲切钢筋后,其破坏机理与无抗冲切钢筋的情况有所不同。一般情况下,板冲切破坏时,抗冲切钢筋 不会屈服,其作用是使板能够承受更大的变形,减小了临界截面混凝土的压应变,从而抗冲切承载力提高。由于板的变形增 大,混凝土本身起的抗冲切作用减小,提高的抗冲切承载力由抗冲切钢筋补偿。所以,考虑混凝土的抗冲切作用时,需进行 一定的折减。

根据 EN 1992-1-1 第 6.4.5 条第(1)款,有筋抗冲切承载力v_{Rd,cs}按下式计算:

$$v_{Rd,cs} = 0.75 v_{Rd,c} + 1.5 \frac{dA_{sw} f_{ywd,ef}}{s_r u_1 d} \sin \alpha \quad (\text{EC2 } \pm 6.52)$$

式中: v_{Rd,c}一无筋抗冲切承载力;

Asw—冲切控制周长处,抗冲切钢筋的总面积;

sr--抗冲切钢筋的径向间距;

fywd.ef—抗冲切钢筋的有效设计强度

$$f_{ywd,ef} = 250 + 0.25d \le f_{ywd}(MPa);$$

d—板的有效高度;

α—抗冲切钢筋与板平面的夹角;

1.4 有筋冲切时, 柱边最大冲切剪应力验算

根据 EN 1992-1-1 第 6.4.5 条第(3)款,有筋冲切时需验算柱边最大冲切剪应力。

17

柱边的最大冲切剪应力按下式验算:

$$v_{Ed} = \beta \frac{V_{Ed}}{u_0 d} \le v_{Rd, \max} \quad (\text{ EC2 } \ddagger 6.53)$$

式中: V_{Ed}—冲切力(按柱边确定)

v_{Ed}—柱边控制周长处冲切剪应力

 $v_{Rd,max}$ 是控制截面的最大抗冲切设计值,由执行欧标国家的国家附录确定,建议值取 $0.5vf_{cd}$ (EC2式 6.53注

释); $\nu = 0.6 \times (1 - f_{ck}/250)$ (式 6.6N);

β—弯矩影响系数(参考 EC2 6.4.3(3), (4)和(5))

 u_0 —柱边控制周长;对内柱, u_0 =柱本身周长;对边柱, $u_0 = c_2 + 3d \le c_2 + 2c_1$;对角柱, $u_0 = 3d \le c_1 + c_2$; c_1, c_2 —柱尺寸

d—板截面有效高度

SAFE 软件在验算有筋冲切时,若柱边的最大冲切剪应力*v_{Ed} > v_{Rd,max}*,程序会提示"Failed, reinforcing not helpful because punching stress exceeds code limits",即冲切剪应力超出规范限值,抗冲切钢筋无效。

1.5 欧标、美标、国标冲切计算流程对比

冲切流程方面,欧标和美标、国标类似。其中欧标和美标均是验算冲切剪应力,国标是验算的冲切力。国标在验算公式 上略有差异,但是思路类似。具体到细节上,欧标、美标、国标还是存在不小差异。

欧标的基本控制周长是根据距柱边 2d 处的周长确定的,而美标、国标是根据距柱边 d/2 处的周长确定的,并且冲切周长的形状也不一样(详见本文第 2 节)。

欧标验算最大冲切应力的位置是柱边;美标、国标取的依然是距柱边 d/2 处。

美标、国标的冲切分析对比可参考往期技术通讯: 基于 SAFE 的美标冲切设计概述及与国标的异同。

表1总结了三本规范冲切计算的大致流程。

	农1 伊切汀异观程对比										
	欧标	美标	国标								
(1) 无需配置抗冲	$v_{Ed} < v_{Rd,c}$	$\mathbf{\Phi}\mathbf{v}_{c}\geq\mathbf{v}_{u}$	$F_l \leq 0.7 \beta_h f_t \eta u_m h_0$								
切钢筋	EN 1992-1-1 第 6.4.3 条	ACI 4.6.1 条	混规 6.5.1 条								
(2) 配置抗冲切钢 筋	v _{Ed} ≥ v _{Rd,c} v _{Ed} < v _{Rd,cs} EN 1992-1-1 第 6.4.3 条	$oldsymbol{\Phi}(oldsymbol{v}_n+oldsymbol{v}_s) \geq oldsymbol{v}_u$ ACI 4.6.1 条	$F_l \leq 0.5 f_l \eta u_m h_0 + 0.8 f_{yv} A_{svu} + 0.8 f_y A_{sbu} \sin \alpha$ 混规 6.5.3 条								
(3)最大冲切应力	v _{Ed} < v _{Rd,max} EN 1992-1-1 第 6.4.3 条	Φ v _{max} ≥ v _u ACI 22.6.4.1 条	$F_l \leq 1.2 f_t \eta u_m h_0$ 混规 6.5.3 条								

ter a substantil Anterstering at the

2.冲切控制截面

根据 EN 1992-1-1 6.4.1 条规定,冲切验算的失效模型如图 1、2 所示。其中: A 为基本控制截面,冲切锥体角度按 26.6°控制; B 为基本控制区域面积; C 为基本控制周长 ui; D 为加载区域面积(一般与柱截面面积一致); r_{cont}为外围控制周长。

图1冲切验算模型立面图(欧标)

B 2d r_{cont}

B - basic control area A_{cont}
 C - basic control perimeter, u₁
 D - loaded area A_{load}
 r_{cont} further control perimeter

图 2 冲切验算模型平面图 (欧标)

根据 EN 1992-1-1 6.4.2 条规定,基本控制周长 u₁ 一般取距加载区域 2d 处的周长,一般按长度最小确定周长(图 3)。 冲切截面的有效高度 d 是取两个钢筋正交方向的有效高度的平均值。

图 3 典型截面的冲切控制周长(欧标)

当板开有孔洞且孔洞至局部荷载作用面积边缘的距离不大于 6d 时,受冲切承载力计算中取用的控制周长 u_1 ,应扣除局 部荷载作用面积中心至开孔外边画出的两条切线之间所包含的长度(图 4)。当图中 $l_1 > l_2$ 时,孔洞边长 $l_2 用 \sqrt{l_1 l_2}$ 代替。

图 4 邻近孔洞时的冲切控制周长(欧标)

当加载区接近边缘或角部时,如果按照图5取值的周长(不包括无支承的边)小于图3的值,则控制周长按图5取值。

图 5 边柱、角柱的冲切控制周长(欧标)

欧标在冲切控制周长的定义上和美标、国标差异较大。如图 6 所示,美标、国标冲切验算的临界截面位于距离支承面 d/2 处,其中 d 指冲切截面有效高度,取两个钢筋正交方向的有效高度的平均值。相当于,美标、国标的冲切锥体角度按 45°控制,欧标的冲切锥体角度按 26.6°控制。并且美标、国标的冲切周长无倒角,欧标的冲切周长存在倒角。因此,美标、国标的冲切控制周长小于欧标。

图 6 美标、国标的冲切控制周长

3.不平衡弯矩的影响

计算无筋或有筋冲切的最大冲切剪应力时,欧标是通过弯矩影响系数β考虑不平衡弯矩的不利影响。其中,系数β与冲 切力平面形状和作用位置有关。以内柱为例,按下式计算:

$$\beta = 1 + k_1 \frac{M_{Ed}}{V_{Ed}} \frac{u_1}{W_1}$$
 (EC2 式 6.39)

式中: k_1 —与柱尺寸 c1、c2 的比值有关的系数(EC2 表 6.1),

M_{Ed}—绕相应中心轴,基本控制周长范围内板传递给柱的不平衡弯矩

W1—考虑剪应力分布的基于控制周长 u1 的函数,按下式计算:

$$W_1 = \int_0^{u_i} |e| dl$$

u1-基本控制周长(参考本文第2节)

dl—周长的增量

e—dl段到中心轴的距离,绕该轴作用的弯矩为M_{Ed}

图 7 内柱处不平衡弯矩产生的剪应力

SAFE 软件并不会直接输出弯矩影响系数 β ,而是只输出 k_1 , M_{Ed} , W_1 , u_1 以及算得的 v_{Ed} 。程序默认按照双向受弯公式 计算:

$$v_{Ed} = \frac{V_{Ed}}{u_i d} \left[1 + k_{1,2} \frac{M_{Ed,2}}{V_{Ed}} \frac{u_1}{W_{1,2}} + k_{1,3} \frac{M_{Ed,3}}{V_{Ed}} \frac{u_1}{W_{1,3}} \right]$$

从以上分析可知, 欧标考虑不平衡弯矩的方式与国标美标存在较大差异。

美标、国标是直接根据不平衡弯矩和冲切力计算冲切临界截面处最大组合剪应力。其中美标是采用应力形式,国标是采用力的形式,但这两者的物理意义是一致的,具体分析可参考往期技术通讯:基于 SAFE 的美标冲切设计概述及与国标的异同。

欧标是先根据不平衡弯矩和冲切力计算弯矩影响系数β,再通过β乘以平均剪应力进而得到最大组合剪应力。并且欧标与计算弯矩影响系数β相关的各项参数也异于美标、国标,尤其是参数W₁,量纲是 m²,既不是截面模量也不是惯性矩,其中M_{Ed}/W₁可以理解为不平衡弯矩在控制周长范围的剪力分布。欧标的不平衡弯矩是根据距柱边 2d 处的周长确定的,而美

标、国标的不平衡弯矩是根据距柱边 d/2 处的周长确定的,并且冲切周长的形状也不一样,最终不平衡弯矩的数值差异明显。

目上外回教会上江体八子

表 2 总结了三本规范最大冲切剪应力的计算公式:

		衣 2 取入件切剪应力计算公式	
	欧标	美标	国标
最大 切 方	$v_{Ed} = \frac{V_{Ed}}{ud} \left[1 + k \frac{M_{Ed,2}u_1}{V_{Ed}W_{1,2}} + k \frac{M_{Ed,3}u_1}{V_{Ed}W_{1,3}} \right]$ $W_1 = \int_0^{u_i} e dl$ EN 1992-1-1 第 6.4.3 条	$v_{u,\max} = v_{ug} + \frac{\gamma_v M_{sc} c_{AB}}{J_c} + \frac{\gamma_v M_{sc} c_{CD}}{J_c}$ $J_c = \frac{d(c_1 + d)^3}{6} + \frac{(c_1 + d)d^3}{6} + \frac{d(c_2 + d)(c_1 + d)^2}{2}$ ACI 8.4.4.2.3	$F_{l,eq} = F_l + \tau_{unb,\max} \mu_m h_0$ $\tau_{unb,\max} = \frac{\alpha_{0x} M_{unb,x} a_x}{I_{cx}} + \frac{\alpha_{0y} M_{unb,y} a_y}{I_{cy}}$ $I_c = \frac{h_0 a_t^3}{6} + 2h_0 a_m \left(\frac{a_t}{2}\right)^2$ 混规 附录 F

4.抗冲切钢筋配置范围

根据 EN 1992-1-1 第 6.4.5 条第 4 款,不需要配置抗冲切钢筋的控制周长 uout 或 uout.ef 可由下式计算:

根据 EN 1992-1-1 第 9.4.3 条,当要求布置抗冲切钢筋时,最外围的抗冲切钢筋布置在*u_{out}或u_{out,ef}*且不超过 kd 的范围 内(图 8)。图 8 中的虚线 A 指控制周长*u_{out}*,虚线 B 指有效控制周长*u_{out,ef}*。k 值由执行欧洲规范国家的国家附录确定, 建议值为 k=1.5,至少应布置两个箍筋,间距不超过 0.75d(图 9)。图 9 中的 A 是指最外侧抗冲切钢筋位置,B 是指不需要 配置抗冲切钢筋的控制周长位置。

在抗冲切钢筋配置范围的计算方面,美标、国标的计算思路和欧标是一致的,都是以配置抗冲切钢筋的冲切破坏锥体外 扩一定范围确定最不利周长、并采用无筋抗冲切承载力进行验算(表3)。欧标的不需要配置抗冲切钢筋的控制周长*u_{out,ef}* 可以是非封闭曲线,而美标的第二临界面的冲切形状是封闭的多边形,国标在第二临界面的冲切形状上没有具体规定。

	欧标	美标	国标
台加	根据 EN 1992-1-1 第 6.4.5	根据 ACI 22.6.4.2 条,配置了抗冲切	《混规》GB50010-2010的6.5.4条规定,
北伊	条第4款,不需要配置抗冲	箍筋后,除需取距离柱边 d/2 的第一	配置抗冲切钢筋的冲切破坏锥体以外的截
切钢	切钢筋的控制周长uout 或	临界截面验算冲切以外,还需要考虑	面,尚应按本规范第6.5.1条(即国标无
肋肌	uout,ef可由下式计算:	第二临界截面,其位于最外侧抗冲切	筋冲切公式)的规定进行受冲切承载力计
且犯	βV_{Ed}	箍筋以外 d/2 处,其冲切形状为多边	算,此时,um应取配置抗冲切钢筋的冲切
围	$u_{out,ef} - v_{Rd,c}d$	形。第二临界截面按无筋冲切验算。	破坏锥体以外 0.5ho 处的最不利周长。

21

表3 抗冲切钢筋配置范围

5.SAFE 冲切设计

以某无梁楼盖的冲切校核为例:若用户建模过程正确,无需修改冲切设计覆盖项,程序能自动判断构件是内柱、边柱还 是角柱;能自动计算冲切周长及冲切截面有效高度。若经过计算后,冲切不满足,则可选中冲切承载力不足的节点,通过【设 计>冲切校核覆盖】,输入抗冲切钢筋样式、钢筋强度、钢筋直径及钢筋间距,之后再次运行设计,程序会按有筋冲切再次进 行设计并输出更新后的设计结果。各覆盖项的含义见 5.1 节。

5.1 覆盖项设置

抗冲切校核覆盖项				
抗冲切校核	Program D	etermined	~	
位置类型	Auto		~	
周长	Auto		~	指定-
有效高度	Auto		\sim	
自定义有效高度				
开洞	Auto		~	指定-
允许配筋	Rebar Ties	i i	~	
配筋样式	Orthogona	d.	~	
钢筋强度Fy		300		MPa
钢筋直径		10		mm
钢筋间距		100		mm

图 10 SAFE 抗冲切校核覆盖项

SAFE软件中,可根据选择的各国规范,进行相应的冲切设计。在冲切设计中,最重要的就是冲切设计覆盖项,现介绍 各项的意义:

表 4 冲切设计覆盖项	
-------------	--

NO.	项	可选值	默认值及说明						
1	冲切校核	程序默认/否	"程序确定"则程序默认对模型进行冲切校核;选择 "否",则对选中的构件不进行冲切设计。						
2	位置类型	自动/内部/边1/ 边2/边3/边4/角 1/角2/角3/角4	"自动"则程序自动判断构件是内柱、边柱还是角柱; 也可人为指定,影响冲切周长及柱类型。						
3	周长	自动/指定冲切 周长/指定受荷 尺寸	"自动"则程序自动确定冲切周长;也可人为指定冲切 周长。						
4	有效高度	自动/指定	"自动"则程序自动确定有效高度;也可人为指定有效 高度。						
5	开洞	自动/指定	"自动"则程序自动根据开洞位置确定冲切周长;也可 人为指定开洞数据。						
6	容许钢筋	否/箍筋/剪力 架	"否"则程序按无筋冲切计算;"箍筋"则无筋冲切不 满足时,按抗冲切箍筋计算;"剪力架"则无筋冲切不 满足时,按抗冲切栓钉计算。						
7	钢筋强度	用户输入	抗冲切钢筋的设计强度Fy。						
8	钢筋直径	用户输入	抗冲切钢筋的直径。						
9	钢筋间距	用户输入	抗冲切钢筋的间距s						

22

5.2 欧标设计结果及解读

图 11 冲切详细设计细节

SAFE 会在设计细节中输出详细的设计信息,如图 11 所示。以下按序号说明各部分内容的含义:

1. 冲切位置处基本信息,包括:

默认最不利荷载组合、柱截面中心点标签、截面形状、位置信息、柱截面中心点坐标。

2. 计算冲切周长的相关参数,包括:

冲切截面有效高度、冲切周长、混凝土保护层厚度、以及混凝土抗压强度、配筋率(板带配筋率)。

3. W-22、W-33 为绕 2 轴、3 轴考虑剪应力分布的基于控制周长 u1 的函数。

4. Gamma_v 为规范规定的 k 值,与柱尺寸 c1、c2 的比值有关的系数,其值是与不平衡弯矩相关的函数。

Moment Mu 为不平衡弯矩,绕临界截面周长重心轴作用,近似等于柱顶弯矩与剪力引起的弯矩之和。

5. Shear Force 为剪力,近似等于柱底反力扣除柱自重、冲切周长内的荷载(包含冲切范围内材料的自重)。

Unbalance Moment MU:代表转化为剪力的不平衡弯矩值,等于 Gamma_V 与 Moment MU 的乘积。

Max Design Shear Stress 为临界截面处的设计剪应力 v_{Ed} ,程序分别在柱截面四个点处计算剪应力,取最大值。

Conc. Shear Stress Capcity 为混凝土项承载力v_{Rd,c}

Punching Shear Ratio: 冲切系数,为设计剪应力与混凝土项承载力的比值,反映抗冲切承载能力。该值小于1时代表冲切验算满足要求,大于1代表抗剪承载力不满足要求,需要配置抗冲切钢筋。

抗冲切配筋设计

Rebar Yield Strength = 300 MPa Rebar Diameter = 16 mm Number of Rebar Sets = 7 Number of Single Leg Stirrups per Set = 17 Typical Rebar Spacing = 100 mm

AFE

图 12 冲切钢筋输出细节

图 12、13 是 SAFE 冲切配筋信息的表达。

图 12 中,从上到下的含义为:抗冲切钢筋强度 fy、箍筋直径、箍筋间距范围内与冲切锥体斜截面相交的全部箍筋根数、 所需箍筋总排数,两排箍筋之间的距离。

综合图 12、13 的信息可知,抗冲切箍筋的屈服强度 fy 为 300MPa,箍筋直径为 16mm,箍筋间距范围内与冲切锥体斜截 面相交的全部箍筋根数为 7 根,所需箍筋总排数为 17 排。对于内柱,可在四个方向均布置抗冲切箍筋,与冲切锥体斜截面相 交的全部箍筋 7 根可分配在 4 个方向,则每个方向为 2 根箍筋,故图 14 中的 1-1 截图为双肢箍。之后在每个方向均布置 17 排箍筋,且两排箍筋之间的距离为 100mm,则最终的箍筋布置方案如图 14。

图 14 冲切钢筋布置平面示意图

24

以上 SAFE 关于板冲切验算及设计的功能均已在 ETABS 中实现。

参考资料

[1]贡金鑫、魏巍巍、胡家顺. 中美欧混凝土结构设计[M]. 北京: 中国建筑工业出版社, 2007.

[2]贡金鑫、车轶、李荣庆. 混凝土结构设计(按欧洲规范)[M]. 北京:中国建筑工业出版社, 2009.

[3] Eurocode 2: Design of concrete structures (Part 1-1: General rules and rules for buildings). EN 1992-1-1 [S]. 2004.

[4]混凝土结构设计规范: GB50010-2010 [S]. 北京: 中国建筑工业出版社, 2015.

[5] Building Code Requirements for Structural Concrete. ACI 318M-14 [S]. 2014.

[6] Computers & Structures Inc. SAFE v20.3.0 联机帮助文档 Reinforced Concrete Slab Design Manual For SAFE

梁拱体系桥梁中吊杆力的计算

筑信达 吕 良

吊杆是梁拱组合体系桥梁的重要组成部分,是将桥面荷载传递给系杆的媒介。吊杆力的合理与否直接关系着拱桥的受力 安全和成桥后的内力分布,并影响桥梁今后正常使用状态乃至使用寿命。对于具有系梁和吊杆的拱桥来说,吊杆力有一定的 调节空间,理论上讲,总可以找到一组吊杆力使得系杆拱桥在确定性荷载作用下的受力状态达到最优,这个过程就是所谓的 吊杆力计算。

目前,确定吊杆索力的常用方法主要包括:刚性支承连续梁法、零位移法、刚性吊杆法、弯曲能量最小法、弯矩最小法 以及影响矩阵法等^[1]。本文将介绍拱桥吊索索力常用的几种计算方法,并通过案例来简要介绍这几种方法在 CSiBridge 中的实 现及操作流程。

1 概述

1.1 常用方法介绍

(1) 刚性支承连续梁法

对于系梁吊杆类似弹性支承,在荷载作用下可以发生弹性或非弹性伸长,使系梁出现挠度变形,从而产生一定的内力。 而刚性支承连续梁法就是在成桥状态下,将吊杆为系梁提供的竖向弹性支承视为竖向刚性支承,如图-1b 所示。假设系梁的弯 矩分布等同于刚性支承连续梁时的弯矩分布,求出此时恒载作用下的各支点反力,各支点反力即为对应的竖直吊杆的索力或 者斜吊杆索力的竖向分力。该状态下系梁内力的分布状态类似于多跨的刚性支承连续梁,梁中正负弯矩交替变化,内力均匀 且数值较小。但是该方法仅考虑了系梁的线型,并没有考虑拱圈的作用,求得索力分布和系梁弯矩分布可能并不均匀。

图1 受力分析简图

(2) 刚性吊杆法

刚性吊杆法主要思想是取吊杆的轴向刚度为较大值,保证吊杆上下两端点间的相对位移等于零,以此来协调系梁和拱肋 之间变形状态,从而得到最优索力。这种方法主要的研究对象是拱肋,在系杆拱结构中,拱肋具有较好的受压性能。刚性吊 杆法通过协调拱肋和系梁之间的关系,充分利用拱肋的抗压性能,使结构受力达到理想状态。在有限元软件计算过程中,可 对吊杆的轴向刚度进行放大,使吊杆两端点间的相对位移为零。通过这种方式求得恒载作用下吊杆的内力即为所求吊杆轴力。 由于在计算中假定吊杆为完全刚性,故将此法称为"刚性吊杆法"。

(3) 零位移法

零位移法是指在恒载作用下通过调整吊杆索力,使结构在成桥状态下,系梁与吊杆锚固连接点处位移为零。该法是在恒载作用下通过选择合适的索力使成桥状态结构在吊杆、梁交点处位移为零。

(4) 最小弯曲能法

该方法以结构(拱肋和系梁)的弯曲应变能达到最小为目标。对于一次落架的系杆拱桥,可将拱肋、系梁和吊杆的轴向刚度 赋以足够大的值或者将拱肋和系梁截面抗弯刚度赋予足够小的值,此时在恒载作用下,结构内力状态即为目标状态,弯曲应 变能最小,对应的吊杆轴力即为所求。

(5) 影响矩阵法

影响矩阵法的原理是将结构中控制构件的内力、应力或者节点位移作为目标变量,将吊杆力视为可调变量,通过影响矩 阵建立目标变量与可调变量之间的关系,通过调整各个可调变量的大小,使是目标变量达到设定的目标。由于该方法既不限 定结构受力或位移状态,也未限定目标函数,因此可将其视为一种数学计算工具,用于索力优化。

1.2 案例模型简介

图 2 中所示的系杆拱计算跨径为 148m,共有 21 对吊杆。该模型单侧拱肋由两个钢管混凝土拱圈通过圆钢管连接,内外两个拱肋均采用二次抛物线形式。其中内侧拱的矢跨比为 f/L=29/146,外侧拱的矢跨比为 f/L=37/150。左右两侧拱肋向桥中心倾斜以提高横向稳定性,形成 X 型拱肋(提篮拱)。拱肋均采用 1200×24mm 钢管混凝土截面,横梁及腹杆为 800×16mm 钢管。

为简化计算,计算时取单侧拱肋计算。模型中拱肋、横梁、腹杆、系梁、吊杆等均采用框架单元模拟。拱肋与系梁在拱脚连接处为刚性连接。系梁一侧采用固定铰接支座(约束 UX、UY、UZ),另一侧采用滑动支座(约束 UY、UZ)。在成桥状态下,考虑了结构自重力、桥面板恒载。本文将以此模型为例简要介绍在 CSiBridge 中吊杆力的计算,并对拱桥的吊杆力、位移、弯矩进行对比,分析每种方法对于该桥的适用性。

图 2 提篮拱模型示意图

2 方法实现

2.1 刚性支承连续梁法

CSiBridge 中采用刚性支承连续梁法计算吊杆索力时,需将吊杆为系梁提供的竖向弹性支承视为竖向刚性支承。分析时可 以直接删除多余吊杆,在吊杆和系杆交点施加节点支座约束模拟刚性支承,这里仅需约束各个吊点的竖向位移(U3),模型处 理如下图所示,然后计算该模型恒载荷载工况下各个支点的反力。提取各个支点方反力,在完整模型中,将各支点反力作为 各个吊杆的目标力,通过目标力工况完成索力的施加。

由于该系杆拱吊索布置较为均匀,因此采用刚性支撑法计算吊杆力时,各个吊杆的轴力分布都比较均匀。在靠近拱脚位 置处由于吊杆距离支座长度较长,两侧吊杆索力明显大于中间各个吊杆轴力。成桥下状态下结构的位移和系梁的弯矩分布图 如图 5 所示。

图 5 刚性支承法-结构位移与弯矩分布图

由以上结果可知,采用刚性支撑连续梁法时,在算得的吊杆力作用下,系梁跨中位移为最大值为-4.37mm。系梁拱脚处的 弯矩最大值为 8577.4kN·m,系梁跨中处的弯矩最小为 4645kN·m。整体来看,吊杆减少了系梁部分位置的弯矩峰值,单并没 有有效的改变弯矩的分布,使弯矩分布成正负交替状态。因此在该吊杆力作用下部分系梁的承载能力可能无法充分利用,此 索力的分布并不是一个特别的理想的结果,需要重新优化索力。

2.2 刚性吊杆法

以文章第一节中的模型为例,简要介绍刚性吊杆法在 CSiBridge 中的操作。建立成桥模型后首先需要对吊杆进行属性修 正,如下图所示,这里将吊杆的横截面面积放大了 1000 倍。注意横截面面积对应的是框架的轴向刚度,修改该数值并不会改 变构件的自重,仅会改变框架单元的轴向刚度。修正完成后即可进行分析,求解出在恒载工况下各个吊杆的轴力,即为所求 的吊杆力。然后将该吊杆力提取出来,恢复吊杆的正常刚度,为各个吊杆指定目标力,目标力的大小为提取的吊杆力,重新 计算即可得到所需的成桥状态。

图 6 刚性吊杆法-属性修正

图 7 刚性吊杆法-预加吊杆力与真实吊杆力对比图

采用刚性吊杆法计算索力时,可以看到对于该模型计算的吊杆力在拱脚位置处非常的不均匀,拱脚第一个吊杆力有 2180.844KN,而第二根吊杆力却为 627.853KN,两者的差异非常大,不符合索力分布均匀的原则。简要分析其原因为,在靠 近拱脚位置处,第一根吊杆的位置处的拱肋的刚度较大,且承担的系梁的梁段长度较长,因此计算的吊杆力较大。靠近拱桥 中间位置处,其刚度分布较为均匀,系梁的分段长度相同,因此计算得到的吊杆力相差不大。成桥下状态下结构的位移和系 梁的弯矩分布图如图 8 所示。

图 8 刚性吊杆法-结构位移与弯矩分布图

查看结构的位移图可知,采用刚性吊杆法时,在算得的吊杆力作用下,系梁跨中位移为最大值为-38.54mm,其竖向变形 过大,不符合设计要求。由弯矩分布图可知,系梁跨中处的弯矩最大为 22130kN·m,系梁拱脚处的弯矩最大值为 18860kN·m, 整体来看,系梁弯矩过大,吊杆并未有效减少了系梁部分弯矩,吊杆力的作用并不明显。因此采用刚性吊杆法计算该模型的 吊杆力并不合适,需要重新优化索力。

2.3 最小弯曲能法

在 CSiBridge 中采用最小弯曲能法计算吊杆力时,首先按设计要求建立成桥模型,然后选中所有拱肋和系梁对应的框架 单元,进行属性修正。这里将拱肋和系梁的抗弯刚度缩小 0.001 倍,其操作如图-9 所示。修正完成后即可进行分析,求解出在 恒载工况下各个吊杆的轴力,即为所求的吊杆力。然后将该吊杆力提取出来,将模型中拱肋和系梁恢复正常刚度,通过目标 力工况为吊杆施加分析得到的吊杆力,重新计算即可得到所需的成桥状态。

28

图9最小弯矩能法-属性修正

图 10 最小弯曲能法-预加吊杆力与真实吊杆力对比图

采用最小弯曲能法计算索力时,可以看到计算得到的吊杆力分布较为均匀,吊杆力基本分布在 1600KN~1800KN 之间,符合索力分布均匀的原则。成桥下状态下结构的位移和系梁的弯矩分布图如图 8 所示。

图 11 最小弯曲能法-结构位移与弯矩分布图

查看结构的位移图可知,采用最小弯曲能法时,在算得的吊杆力作用下,系梁跨中位移为最大值为-1.319mm,其竖向变 形非常小,满足设计要求。有弯矩分布图可知,系梁跨中处的弯矩最大为827kN·m,系梁拱脚处的弯矩最大值为2134kN·m, 整体来看,系梁弯矩分布均匀,呈波浪状分布,材料利用率较为充分。因此采用最小弯曲能法计算该模型的吊杆力可作为手 动优化调整吊杆力的基础,在此状态上进一步优化索力。

2.4 零位移法

CSiBridge 中提供了专用于索力优化的工具^[3]:荷载优化器,其理论基础为影响矩阵法。这里以零位移法的状态为目标,控制吊杆和系梁交点位置的竖向位移为 0,通过荷载优化器来计算在该状态下的吊杆轴力。

对于文章第一节中的模型,其计算步骤如下:①首先建立成桥状态的下的模型,②定义一个荷载模式,为"优化荷载", 并为各个吊杆指定-0.001mm/mm 的单位应变荷载,③定义一个阶段施工的荷载工况,在第一步添加所有结构和结构恒载。并 依据结构的对称性,将吊杆分为 13 组,依次对各组吊杆施加荷载"优化荷载"。④打开荷载优化器,在荷载优化器中选择上 一步定义的阶段施工荷载工况为"优化工况",指定各个吊杆力为可调变量,目标变量即设定目标为各个吊点的竖向位移,这 里均设置为 0.0005mm,如图-12 所示。定义完成后,即可运行分析,程序会自动迭代计算求出满足要求的吊杆力。

lame .oad .oad	Case Type Case	Lopt1 Staged Con 优化	struction v	Max. Iterat Accel. Fact Rel. Conv.	ions 10 or 1 Tol. 0.001		Current Prob. 1 Obj. Function 1	ype: Deter Only ype Sum	minate Goals will b of Squares	e utilized ∽
ad	Assignments	(Number of)	ariables: 11)							Hide Fixed
	Stage	Operation Type	Object Type	Object Name	Load Type	Load Name	Scale Factor	Variable	Relative Cost	Perturbation Factor
•	1	4	Group	<bobj1>ALL</bobj1>	Load	DEAD	0.5	Variable	1	0.001
	1	4	Group	吊杆组−1	Load	优化	1	Fixed	1	0.001
	1	4	Group	吊杆组-2	Load	优化 施	调向量	Variable	1	0.001
	1	4	Group	吊杆组−3	Load	优化	1	Variable	1	0.001
	1	4	Group	吊杆组→4	Load	优化	1	Variable	1	0.001
	1	4	Group	吊杆组-5	Load	优化	1	Variable	1	0.001
	1	4	Group	吊杆组⊸6	Load	优化	1	Variable	1	0.001
als	and Limits	(Number of G	ioals: 11, Mu	nber of Limits:	0)	laca.	1.		1.	Delete Goal
	Туре	Nan	ie	Location	Component	Sense	Target Value	Stage	Relative Benefit	Absolute Tolerance
•	Joint Displ	la ∨ 3			V3	-	-0.0005	1	1	1E-06
	Joint Displ	acement 4			V3	- 受	调向量	1	1	1E-06
	Joint Displ	acement 5			V3	-	-0.0005	1	1	1E-06
	Joint Displ	acement 6			V3	-	-0.0005	1	1	1E-06
	Joint Displ	acement 7			1/3	-	-0.0005	1	1	1E-06
	Joint Displ	acement 8			U3	=	-0.0005	1	1	1E-06
	Joint Displ	acement 9			V3	-	-0.0005	1	1	1E-06

图 12 零位移法-荷载优化器设置

分析完成后程序会自动生成优化工况"优化_Lopt1",在该工况中用户可以看到各个吊杆组中的比例系数发生了改变,如 图-13 所示。以吊杆组-1 为例,优化前指定的初始应变为 0.001mm/mm,比例系数为 1。达到设置的目标状态时,比例系数变 为 0.7846,其施加的应变荷载为初始应变荷载的 0.7846 倍,表示需要对吊杆组-1 施加 0.001mm/mm×0.7846mm/mm 的应变荷 载。其他的吊杆组按相同的方式依据比例系数调整施加的索力,结构即可达到设定的目标状态。成桥状态下,各个吊杆的轴 力如图 14 所示。

Ⅰ 荷载工况数据 -Staged Construction 阶段施工分析

阶段操作	对象类	쾨	对象名称	添加齡期	类型	名称 🖆	比例系
Add Structure	✓ Group	~ All	~	3.			
Load Objects	Group	吊杆组	-1		Load Pattern	优化	0.7846
Load Objects	Group	吊杆组	-2		Load Pattern	优化	1.8339
Load Objects	Group	吊杆组	-3		Load Pattern	优化	1.7424
Load Objects	Group	吊杆组	-4		Load Pattern	优化	1.694
Load Objects	Group	吊杆组	-5		Load Pattern	优化	1.6129
Load Objects	Group	吊杆组	-6		Load Pattern	优化	1.5749
Load Objects	Group	吊杆组	-7		Load Pattern	优化	1.5287
Load Objects	Group	吊杆组	-8		Load Pattern	优化	1.5025
Load Objects	Group	吊杆组	-9		Load Pattern	优化	1.4795
Load Objects	Group	吊杆组	-10		Load Pattern	优化	1.4678
Load Objects	Group	吊杆组	-11	1	Load Pattern	优化	1.4634

采用零位移法计算吊杆力时,可以看到跨中部分计算得到的吊杆力分布较为均匀,吊杆力基本分布在 1600KN~1800KN 之间,但是拱脚位置处的索力分布却差异较大。其中边吊杆 A1、A21 吊杆力非常小仅有 172KN,但是吊杆 A2、A20 的吊杆 力却有 2597KN,轴力相差 10 倍左右,吊杆 A1、A21 的基本没有太大作用。成桥下状态下结构的位移和系梁的弯矩分布如图 15 所示。

图 15 零位移法-结构位移与弯矩分布图

查看结构的位移图可知,采用零位移法法时,在算得的吊杆力作用下,系梁跨中位移为最大值为-0.5001mm,其竖向变形 非常小,满足设计要求。由系梁的弯矩分布图可知,系梁跨中处的弯矩最大负弯矩为 434kN·m,系梁拱脚处的弯矩最大值为 6840kN·m,整体来看,系梁弯矩分布均匀,呈波浪状分布,材料利用率较为充分,但是端部系梁的弯矩过大,边吊杆 A1、A21 对系梁的弯矩控制没有明显作用。该计算结果大部分都比较理想,但是拱脚位置处还需要优化,需要调整拱脚附近吊杆力, 发挥吊杆 A1、A21 的作用,减少系梁弯矩峰值。

3 综合结果比较

将上述几种算法求得的吊杆力进行对比,整理数据如下图所示。可以看到,基于以上方法计算吊杆的索力在 A1、A2、A3、A4、A18、A19、A20、A21 中吊杆力差异较大,其余吊杆力的分布类似,数值相差并不明细。其中最小弯曲能法计算各 个吊杆的差异最小,吊杆力最稳定。零位移法计算的吊杆力差异最大,吊杆 A1、A2 轴力数值非常小,基本没有受力,而其 他吊杆力分布都比较稳定。另外,对于该模型刚性支撑连续梁法和最小弯矩能法的计算结果相对比较接近,仅在拱脚位置处 吊杆力差异会较大。仅从吊杆力的分布来说,最小弯曲能法的吊杆力计算结果最合理。

由图 17 对比四种算法得到的系梁弯矩图,刚性连续梁法和刚性吊杆法计算出的系梁弯矩分布形式均类似抛物线型,表明吊杆力并没有有效改善系梁的弯矩的分布。尤其是刚性吊杆法,最大最小弯矩变化幅度最明显,不满足设计要求。零位移法和最小弯曲能法中系梁的弯矩分布基本呈波浪形式,吊杆力有效的削减了系梁的弯矩峰值。在跨中部分,两种分析方法的弯矩分布非常类似。而越靠近拱脚位置处,两者差异越明显。其中零位移法在拱脚处的峰值达到了 6840kN·m,而最小弯曲能法的峰值仅有 2134kN·m,因此从系杆弯矩分布的角度来说最小弯曲能法的计算结果更合理。

图 17 系梁弯矩分布汇总图

综上对比分析可知,对于该模型采用最小弯曲能法求得的成桥吊杆内力值分布较均匀,系梁弯矩呈波浪状均匀分布,且 数值较小,竖向位移较小,结果较为合理。可以以此计算状态为基础,选取系梁或拱肋部分截面弯矩为控制目标,进一步优 化吊杆力。

需要注意的是,不同拱桥具有不同结构形式、刚度分布等,因此不同的计算方法计算出的吊杆力差异可能较大,不同桥 型适用的索力计算方法可能并不相同。计算时,用户可采用多种吊杆力计算方式初步计算吊杆力,然后选取其中最合理的结 果初始索力,然后再依据其他要求进一步优化索力。

4 小结

在系杆拱桥设计过程中,吊杆索力的确定是桥梁结构分析计算的核心内容。本文综述了系杆拱桥成桥吊杆索力优化的几 种常用方法以及如何在 CSiBridge 中实现,并简要探讨了这些方法在确定系杆拱桥成桥吊杆索力上的适用性。CSiBridge 作为 桥梁专业性软件,在确定系杆拱桥成桥吊杆力问题时,具有方法多样、概念清晰、计算快捷等特点,可以有效地指导系杆拱 桥的设计及施工。

参考资料

[1]傅金龙,黄天立. 刚性系杆拱桥成桥吊杆索力优化方法的适用性研究[J]. 铁道科学与工程学报, 2014, 11(4):8.

[2]李广群. 基于系杆拱桥成桥吊杆索力优化方法[J]. 四川水泥, 2015(5):1.

[3]Computers & Structures Inc., 北京筑信达工程咨询有限公司. CSI 分析参考手册. 2021.

声明: "工程应用常见问题案例解析"专栏基于工程案例阐释软件应用的常见问题及解决方法,希望为遇到类似问题 的工程师提供参考。本栏目中的所有案例均来自筑信达软件用户,软件模型归属设计单位,相关内容仅用于软件应用技术 的探讨。如有不妥,请联系我们删除。

基础错层时的层剪力统计

本案例主要介绍结构存在基础错层时查看层剪力结果的注意事项。

某超高层结构如图 1 所示,基础标高为-0.65m。首层有部分构件落在-0.05m 标高处(图 1 立面视图中红色构件),其他构件(图中蓝色构件)落在基础-0.65m。

计算完成后发现 Base 层的剪力异常,原因是什么?

33

解决办法/SOLUTION

ETABS 中的层指标均基于楼层数据统计。统计层剪力时,程序将根据楼层范围内的构件、以及构件端落在层标高处的节 点进行统计。原模型中 Base 层标高为-0.65m,首层未落在该标高处的构件内力未统计在层剪力范围内,Base 层实际只包括 了 5 根框架柱的支座,其余构件嵌固在 Story1,故结果异常。

我们可以通过截面切割校核程序的统计结果。具体操作为:模型计算完成后,选中落在-0.65m的竖向构件及其底部节点,通过【指定>对象组】将其定义为对象组 G1,并通过【定义>截面切割】得到对象组 G1 的合力结果。

图4指定对象组

_				
E	截面切割数据			
	名称	G1	-0.65m	
	截面定义		内力输出位置	
	● 对象组○ 四边形		该选	项不可用
	对象组		四边形范围	
	对象组 G1	\sim	数 重	
	内力类型		当前显示:无	
	● 分析内力(F1, F2, F3, M1, M2, M3)			
	○ 设计内力(P, V2, V3, T, M2, M3)			
	合力点			
	◉ 默认位置			
	〇 自定义			
	坐标 X	m	检查四边	2形的有效性
	坐标Y	m	程序基于【完全或部分】落	在四边形区域内的所有单元统
	坐标 Z	m	计截面功制的内力。	
	坐标 ¥ 坐标 Z	m	程序基于【元全或部分】港 计截面切割的内力。	在四辺形区域内的所有单元统

图 5 定义截面切割

在【显示 > 显示表格 > Analysis results > Structure output > Other output】中可以看见截面切割结果,默认情况下方向 1、

2、3分别对应全局 X、Y、Z 坐标轴,因此查看 F1,可得剪力为 515kN,与程序输出的层剪力结果一致。

Units: A	As Noted H	lidden Columns: N	o Sort: N	one		Story Forces				
Filter: (filter: ([Story] = 'STORY1')									
	Story	Output Case	Case Type	Step Туре	Location	P kN	VX kN	VY kN		
•	STORY1	EX	LinRespSpec	Max	Bottom	289.8229	515.001	312.327		

图 6 层剪力结果

Units: As Noted Hidden Columns: No Sort: None Filter: None					Section Cut	Forces - Analysis	5	
	SectionCut	Output Case	Case Type	Step Туре	F1 kN	F2 kN	F3 kN	M1 kN-m
•	G1-0.65m	EX	LinRespSpec	Max	515.0004	312.3271	289.8225	4473.2934

图 7 对象组 G1 截面切割结果

若需获取首层所有构件的层剪力,有两种方法:

(1) 可直接查看 base reaction 表格中的基底剪力,基底剪力将基于模型中所有支座、点弹簧的反力统计;

(2) 通过截面切割获取相关构件的内力,本例将首层所有竖向构件及底部节点定义为一个对象组,输出其截面切割结

果。

两种方法下得到的层剪力结果一致,如下所示:

Units: A	As Noted	Base React	Base Reactions					
Filter: None								
	Output Case	Case Type	Step Туре	FX kN	FY kN	FZ kN	MX kN-m	
•	EX	LinRespSpec	Max	24361.2175	5589.3887	0.0043	97597.4693	

图 8 基底反力结果

Units: A	As Noted	lidden Columns: N	Section Cut	Section Cut Forces - Analysis							
Filter: N	Filter: None										
	SectionCut	Output Case	Case Type	Step Type	F1 kN	F2 kN	F3 kN	M1 kN-m			
•	Story1	EX	LinRespSpec	Max	24361.2175	5589.3887	0.0043	94567.1842			

基础不同标高时的层剪力统计

本案例主要介绍模型存在两个基础标高时应如何查看层剪力结果。

该模型为核心筒下沉建筑,地上11层,地下3层,如下图所示。

✓ 问题描述/PROBLEM

计算完成后发现下沉区域层剪力偏小,不符合层剪力从下往上依次减小的趋势,且与国产软件输出结果不同,原因是什么?应该怎么处理?

解决办法/SOLUTION

ETABS 中的层剪力基于从属于楼层范围的竖向构件统计,比如首层剪力基于首 层柱构件的内力统计,二层剪力基于二层的剪力墙内力统计。大部分上部结构的剪 力传递至浅基础处,故下沉区域剪力偏小。

我们可以通过截面切割校核程序的统计结果。将首层柱及其底部节点定义在对 象组 story1 中,通过定义截面切割查看 story1 的合力结果如图 3 所示,与图 4 中程 序输出一致。

图 2 楼层剪力图

工程应用常见问题案例解析

Units: A Filter: N	As Noted H Ione	lidden Columns: N	lo Sort: N	one		Section Cut For	rces - Analysis
	SectionCut	Output Case	Case Type	Step Туре	F1 kN	F2 kN	F3 kN
•	SCut1	EQX	LinRespSpec	Max	33853.9714	750.1983	513.8877

图 3 story1 截面切割结果

Inits: As Filter: No	s Noted one	Hidden Columns: N	lo Sort: N	one		Story Forces	
	Story	Output Case	Case Type	Step Type	Location	P kN	VX kN
	14	EQX	LinRespSpec	Max	Bottom	0	21784.431
	13	EQX	LinRespSpec	Max	Bottom	0	33533.882
	12	EQX	LinRespSpec	Max	Bottom	0	45288.985
	11	EQX	LinRespSpec	Max	Bottom	0	53738.467
	10	EQX	LinRespSpec	Max	Bottom	0	61522.790
	9	EQX	LinRespSpec	Max	Bottom	0	69279.375
	8	EQX	LinRespSpec	Max	Bottom	0	75208.786
	7	EQX	LinRespSpec	Max	Bottom	0	81190.375
	6	EQX	LinRespSpec	Max	Bottom	0	85812.901
	5	EQX	LinRespSpec	Max	Bottom	0	89007.808
	4	EQX	LinRespSpec	Max	Bottom	0	89262.875
	3	EQX	LinRespSpec	Max	Bottom	513.8877	33814.682
	2	EQX	LinRespSpec	Max	Bottom	513.8877	33841.389
	1	EQX	LinRespSpec	Max	Bottom	513.8877	33853.971

图 4 story1 楼层力结果

国产软件统计层剪力时不仅考虑了本层竖向构件的内力,还考虑了浅基础处的剪力,故可以得到层剪力从上往下大致递 增的规律。有时候用户有模型二次校核、指标对比等需求,需在 ETABS 中得到考虑浅基础处剪力的层剪力结果,此时可灵活 定义截面切割完成统计。对于第一层,可将首层竖向构件、与浅基础相连的构件及其节点定义为一个对象组 S1,同理,可以 得到其他层的层剪力结果。

可以看到,基于 S1 得到的截面切割结果与程序输出的 Base reaction 一致,S4 截面切割结果与 Story4 一致。总体来看,下沉区域层剪力几乎没有变化,按此方式统计的剪力与国产软件统计的结果一致。

37

工程应用常见问题案例解析

Units: A Filter: N	As Noted H Ione	lidden Columns: N	lo Sort: N	one	Base	e Reactions
	Output Case	Case Type	Step Туре	FX kN	FY kN	FZ kN
•	EQX	LinRespSpec	Max	89228.7738	1561.499	0

图 6 基底剪力结果

Units: As Noted Hidden Columns: No Sort: None Section Cut Forces - Analysis Filter: None										
	SectionCut	Output Case	Case Type	Step Type	F1 kN	F2 kN	F3 kN			
	S1	EQX	LinRespSpec	Max	89228.7738	1561.499	0			
	S2	EQX	LinRespSpec	Max	89245.8961	1561.7989	0			
•	S3	EQX	LinRespSpec	Max	89277.3619	1561.413	0			
	S4	EQX	LinRespSpec	Max	89262.8758	1558.6734	0			

图 7 S1~S4 截面切割结果

Units: A Filter: N	As Noted H Ione	Story Forces					
	Story	Output Case	Case Type	Step Type	Location	P kN	VX kN
	14	EQX	LinRespSpec	Max	Bottom	0	21784.4317
	13	EQX	LinRespSpec	Max	Bottom	0	33533.8822
	12	EQX	LinRespSpec	Max	Bottom	0	45288.9856
	11	EQX	LinRespSpec	Max	Bottom	0	53738.4671
	10	EQX	LinRespSpec	Max	Bottom	0	61522.7909
	9	EQX	LinRespSpec	Max	Bottom	0	69279.3752
	8	EQX	LinRespSpec	Max	Bottom	0	75208.7866
	7	EQX	LinRespSpec	Max	Bottom	0	81190.3756
	6	EQX	LinRespSpec	Max	Bottom	0	85812.9014
	5	EQX	LinRespSpec	Max	Bottom	0	89007.8086
•	4	EQX	LinRespSpec	Max	Bottom	0	89262.8758

图 8 Story4 楼层力结果

编写:刘慧璇

38

弹塑性时程分析模型检查二则

本案例介绍两例弹塑性模型检查遇到的问题。

如图所示,模型为12层框架核心筒结构,结构布置有塑性铰,进行大震弹塑性时程分析。

✓ 问题描述/PROBLEM

筑信达技术通讯文章《<u>ETABS 与 Perform3D 弹塑性分析功能对比示例</u>》中,展示了 ETABS 弹塑性分析强大分析功能与分 析效率,但是此模型 ETABS 的分析时间超过了 1 小时,而 Perform3D 仅需 10 分钟左右, ETABS 并不像文章中那样高效,请协 助检查模型。

.

解决办法/SOLUTION

模型检查过程中发现如下问题:

 材料定义有误。混凝土和钢筋材料的强度值取用错误,混凝土材料中输出的强度为混凝土强度标准值,例如C30 混凝土中,应输入20.1MPa,而非30MPa;钢筋材料存在多个强度,在非线性分析当中使用的是期望屈服强度和期望 极限强度,考虑到中国规范中常采用屈服强度进行设计,因此可以将材料的屈服强度输入至期望屈服强度中,例 如HRB400钢筋中,期望屈服强度应输入400MPa,而非360MPa。

工程应用常见问题案例解析

设计属性		X E 设计属性	
常规数据		常规数据	
材料名称	C30	材料名称	HRB400
材料类型	Concrete, 各项同性	材料类型	Rebar, 单轴
等级	GB50010 C30	寺驳	HRB400
		设计属性	
设计属性		屈服强度 Fy	400 MPa
混凝土抗压强度标准值 Fck	_20.1 MPa	极限强度 Fu	486 MPa
□ 轻质混凝土		期望屈服强度 Fye	400 MPa
抗剪强度折减系数		期望极限强度 Fue	486 MPa

图1 混凝土材料与钢筋材料强度属性输入

- 2. 楼板剖分。模型中楼板的剖分尺寸目前是 0,这会导致创建分析模型出错,楼板全部丢失,将楼板剖分尺寸改为
 1.5米后,分析正常。
- 电梯井处存在开洞,但是开洞上面布置了荷载,这是不允许的,这部分荷载会丢失,并给出警告信息,建议删除 开洞部分的面荷载。
- 未定义初始重力工况且时程工况未接力初始重力工况。这可能会导致分析出现较为严重的问题,梁内力可能会偏小,墙、柱的轴压比偏小、屈服强度失真、延性偏大等问题,因此初始重力工况是必须要考虑的。
- 5. 分析建议考虑 P-Δ 效应,且初始工况和时程工况中均考虑了 P-Δ 效应。
- 6. 铰的模拟方式应采用"单元属性"。铰模拟方式采用"单元属性"会使分析速度和收敛性有较大的提高,推荐采用。 铰模拟方式采用"连接单元"方法主要是适用于 FNA 法,但是 FNA 法并不适合于连接单元数量过大的情况,通常 连接单元的非线性自由度数量超过节点数量的 20%时, FNA 法的计算效率将会低于直接积分法。

图 2 非线性铰的分析模型

7. 求解器建议采用多线程求解器。

经上述修改后,计算时间如下:

如果楼板采用壳单元, 1.5m 剖分, 且考虑 P-Δ 效应, 分析时间约 10 分钟;

如果楼板采用膜单元,且考虑 P-Δ 效应,分析时间约 5 分钟;如果不考虑 P-Δ 效应,分析时间约 4 分钟。

机器配置: AMD R7 3700X, 内存 16G。

工程应用常见问题案例解析

如图所示,模型为5层隔震结构,主体结构弹性,进行大震弹塑性分析。

✓ 问题描述/PROBLEM

模型分别采用了 FNA 和直接积分法进行分析,但是发现通过 FNA 法得到的隔震支座变形较直接积分法大 20mm~50mm,请问是什么导致了这些差别。

😭 解决办法/SOLUTION

模型检查过程中发现如下问题:

1、程序中给出荷载作用于无质量自由度上的警告。可通过对连接单元添加质量和转动惯量解决这个问题,如下图,这 对 FNA 法的分析结果可能有影响。

名称	2GHDB1000-0 392	P-Delta 参数	修改 / 見 テ
444 191			16 FX / 32 小…
类型	Rubber Isolator V	可接受准则	修改/显示
注释	修改/显示		None specified
总质量和总重量			
质量	0 kN-s²/mm	转动惯量1	1E-04 kN-mm
重量	1 kN	转动惯量2	1E-04 kN-mm
		转动惯量3	1E-04 kN-mm
2 Paid PE In 22 aid PE 65	乏 #h		

图1连接单元质量与转动惯量

2、RITZ 设置,取消掉 RX、RY 和 RZ,这三个分量对分析而言没有实质的作用,而且会激发出一些不需要的模态,降低其他荷载的动力参与系数,从而影响分析精度,故删除掉。另外,为兼顾分析时间与精度,采用了 1000 个模态数量进行计算。

3、分析步长。由于分析中包含了竖向的加速度,并且模型中包含了摩擦摆支座,因此我们需要关心一下时程分析步长。 理论上讲,直接积分方法的分析步长应足够小以满足分析精度,通常要求 Δt<0.1T,对于多自由度,可按照质量参与系数达 到 90%时的周期确定分析步长,如下图所示,实际取值为 0.005s。经对比发现,取值为 0.005 时,曲线更加光滑,连接单元 变形和出力会有一定幅度的变化,但是未超过 2%。

	at miler bort	Select Options	,						
As Noted	Hidden Columns: 1	No Sort: Non	e		Modal Particip	pating Mass Ratio	8		
Case	Mode	Period sec	UX	UY	UZ	SumUX	SumUY	SumUZ	RX
Ritz-2000	361	0.061	0	0	0.002	0.9984	0.9984	0.8937	0.0
Ritz-2000	362	0.061	0	0	0.0008	0.9984	0.9984	0.8945	0.0
Ritz-2000	363	0.061	0	0	0.0018	0.9984	0.9984	0.8963	0.0
Ritz-2000	364	0.061	0	0	6.101E-06	0.9984	0.9984	0.8963	0.0
Ritz-2000	365	0.061	0	0	0	0.9984	0.9984	0.8963	8.818
Ritz-2000	366	0.06	0	0	0.0016	0.9984	0.9984	0.8979	0.0
Ritz-2000	367	0.06	0	0	0.0004	0.9984	0.9984	0.8982	0.0
Ritz-2000	368	0.06	0	0	2.465E-06	0.9984	0.9984	0.8982	0
Ritz-2000	369	0.06	0	0	0.0046	0.9984	0.9984	0.9028	0.0
Ritz-2000	370	0.06	0	0	2.483E-05	0.9984	0.9984	0.9028	0.0
Ritz-2000	371	0.06	0	0	0.0006	0.9984	0.9984	0.9035	0.0
Ritz-2000	372	0.06	0	0	1.562E-05	0.9984	0.9984	0.9035	0.0
Ritz-2000	373	0.059	0	0	0.0005	0.9984	0.9984	0.904	0.0
Ritz-2000	374	0.059	0	0	0.0002	0.9984	0.9984	0.9042	4.183

图 2 竖向质量参与系数

4、连接单元的刚度选项。原模型中用于刚度比例粘滞阻尼的刚度采用的是为 KO,但是这个并不合理,首先,瑞利阻尼的周期点其实是按照有效刚度 Ke 计算的,不是初始刚度 KO:其次,连接单元在变形过程中,其刚度是在变化的,会因屈服而减小,如果使用 KO 的话,会导致刚度阻尼值偏大;最后,RITZ 的模态是按照 Ke 计算得到的,如果直接积分法中瑞利阻尼采用 KO 会与 FNA 法中的模态阻尼不匹配,因此建议此处使用 Ke 进行计算。

	Ξ							
常规数据								
名称		2LH	DR800-0.392	P-Delta 参	潋		修改/显示	
类型		Rub	ber Isolator 🗸 🗸	可接受准	则		修改/显示	
注释			修改/显示			None	specified	
总质量和总	重重							
质量		0	kN-s²/mm	转动	慣量1		1E-04	kN-mm-s
重量		1	kN	转动	慣量2		1E-04	kN-mm-s
				转动	慣量3		1E-04	kN-mm-s
线弹簧和面 连接/支) 连接/支)	避難的系 座属性用 座属性用	数 于线弹簧时拍 于面弹簧时拍	9从属长度 9从属面积				1000	mm mm²
(3弾簧和面) 注接/支) 注接/支) 注接/支) 注接属性	弹簧的系 座属性用于 座属性用于	数 于线弹簧时拍 于面弹簧时拍	9从属长度 9从属面积				1000	mm mm²
 线弹簧和面 连接/支」 连接/支」 连接/支」 连接属性 分里 	弾簧的系 座属性用音 座属性用音 固定	数 F线弹簧时拍 F面弹簧时拍 非线性	9从属长度 9从属面积 属性	分里	固定	非线性	1000 1000000 属性	mm mm²
线弹簧和面 连接/支/ 连接/支/ 连接属性 分量 ✓ U1	弾簧的系 座属性用音 座属性用音 固定 □	数 于线弹簧时拍 于面弹簧时拍 非线性	9从属长度 9从属面积 属性 修改/显示	分里 □ R1	固定	非线性	1000 1000000 属性 修改/显示	mm mm²
线弾簧和面 连接/友 连接/友 连接属性 分里 ☑ U1 ☑ U2	 · 弾簧的系 · 座属性用 · 面 定 □ 	数 F线弹簧时拍 F面弹簧时拍 非线性 ☑	9从属长度 9从属面积 属性 修改/显示 修改/显示	分里 □ R1 □ R2	固定	非线性	1000 1000000 腐性 修改/显示 修改/显示	mm mm²
(弾簧的系 全属性用 固定 し し	数 于线弹簧时拍 于面弹簧时拍 非线性 ☑ ☑	9)从属长度 9)从属面积 属性 修改/显示 修改/显示 修改/显示	分里 □ R1 □ R2 □ R3	固定	非线性	1000 1000000 腐性 修改/显示 修改/显示	mm mm²
(規弾簧和面 连接 接/支) 注接 分量 公 U1 公 U2 ○ U3	遵 著 的系 部 に 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	数 F线弹簧印拍 手面弹簧印拍 非 线性 □ ☑	9)从属长度 9)从属面积 属性 修改/显示 修改/显示 修改/显示 全部固定	分里 □ R1 □ R2 □ R3 全部清空	固定 □ □	非线性 	1000 1000000 属性 修改/显示 修改/显示	mm mm ²
(裁弾簧和面) 這接/支」 達接/支」 達接/型 ○ U1 ○ U1 ○ U2 ○ U3 ○ U3	 · · ·	数 Ft线弹簧印拍 FT面弹簧印拍 非线性 V V	9)从属长度 9)从属面积 属性 修改/显示 修改/显示 修改/显示 全部固定	分里 □ R1 □ R2 □ R3 全部清空	目定	非线性	1000 1000000 腐性 修改/显示 修改/显示	mm mm²
(裁弾簧和面) 違接/支」 違接/支」 注接/支」 ○ U1 ○ U1 ○ U2 ○ U3 ○ U3 ■ 周度选项 用于线性	遵 著 的系 重 座 属 性 用 音 固 定 □ <	数 于线弹簧印拍 于面弹簧印拍 非 线性 	9)从属长度 9)从属面积 属性 修改/显示 修改/显示 修改/显示 全部固定 度	分里 □ R1 □ R2 □ R3 全部有空	固定 □	非线性	1000 1000000 属性 修改/显示 修改/显示 修改/显示 修改/显示	mm mm²

图 3 连接单元的刚度选项

5、模型中 FNA 法和直接积分法都采用了瑞利阻尼,但是两者也不是一样的。FNA 法是将瑞利阻尼转换为模态阻尼进行 使用的,而且 FNA 法阻尼值不会超过 1,如图 4 所示,而瑞利阻尼是可以出现过阻尼的情况的。但这对分析结果影响比较小, 因为此时结构频率非常高,动力效应比较小,可忽略。

分析完成					
File Name: F:	:\客户模型\2023	2-08\云南\E	TABS隔震弹	塑性模型(带支座FM	A)-臧小步长(EDB)
Start Time: 20	022/8/17 10:59	:23 Elapse	d Time: 01	:02:46	
R' ' 1 T' O	000/0/17 10.00	.10 D C			
finish lime20	JZZ/8/17 12:02	10 Kun St	atus: 3ā	朱 二 万忉元帆	
Run 1					
947	0.008658	0.990502			
948	0.008638	0.992802		>+70	口人计图上
949	0.008629	0.993866		א עיז אדע	犯会放首刀
950	0.008606	0.996513			
951	0.008595	0.997731		∩ QQ	aaa
952	0.008594	0.997926		0.55	
953	0.008571	1.000579,	SET TO	0.999950	
954	0.008521	1.006418,	SET TO	0.999950	
955	0.008519	1.006708,	SET TO	0.999950	
956	0.008505	1.008297,	SET TO	0.999950	
957	0.008490	1.010134,	SET TO	0.999950	
958	0.008471	1.012395,	SET TO	0.999950	
959	0.008456	1.014101,	SET TO	0.999950	
960	0.008434	1.016820,	SET TO	0.999950	
961	0.008419	1.018569,	SET TO	0.999950	
962	0.008413	1.019333,	SET TO	0.999950	
963	0.008399	1.021045,	SET TO	0.999950	
964	0.008373	1.024214,	SET TO	0.999950	
965	0.008352	1.026735,	SET TO	0.999950	
966	0.008339	1.028357,	SET TO	0.999950	
967	0.008304	1.032661,	SET TO	0.999950	
968	0 008265	1 037580	SET TO	0 999950	

图 4 FNA 法中的模态阻尼比

按上述修改后,计算结果如下,两者吻合度非常高,且计算结果更加接近于原 FNA 法。

图 5 直接积分法与 FNA 法下连接单元的变形

编写:吴文博

立柱在节点是否打断对美标设计的影响

本案例主要介绍采用 SAP2000 软件美标计算分析某工业钢结构,在其他条件相同情况下,钢支架立柱在节点打断和不打断计算结果差异悬殊的原因。

图 2 钢框架柱打断的应力比

图 3 钢框架柱未打断的应力比

解决办法 /SOLUTION

在进行钢框架设计时,需要把钢框架柱在梁柱相交节点处打断,这样程序才能根据正确的梁柱线刚度判断计算长度系数,这一点无论是国标还是美标均是如此。

但是这个模型却显示,打断后的模型算出的应力比远大于打断前。通过查看该钢框架柱的详细设计细节,会发现对应的轴力项有效长度系数 K₂取值均远大于 1.0(图 4、图 5),这跟该工业钢结构采用的框架支撑体系不符。

AISC 360 规范中,计算长度系数 K 有两种。一种用于所有梁柱节点位置固定,即无侧移的情况,用 K₁标识,该参数用 于构件的 P-delta 效应的 B₁系数计算(AISC 360-10 附录 8.2)。程序默认 K₁=1,对应图 6 中第 22/23 项的有效长度系数 K1。 若 K1 需取其它值,需由用户指定。另一种用于所有梁柱节点位置能自由移动,即有侧移的情况,用 K₂标识,对应图 6 中第 24/25 项的有效长度系数 K2。该参数类似中国规范钢标附录 E 的柱计算长度系数。程序自动计算 K₂,用户也能修改。K₂用于 计算构件的轴向承载力。K₁和 K₂均可通过 SAP2000 的钢框架设计覆盖项进行人工指定(图 6)。

针对 AISC 360 规范, SAP2000 程序默认的 K₂计算方法适用于有侧移的抗弯框架,对于带支撑框架或其他结构体系,用 户需自行设置 K₂的数值,本案例的钢框架虽然为带支撑的框架,但是由于程序默认是按照有侧移的抗弯框架计算 K₂,因此 程序默认算出的 K₂ 偏大。根据 AISC 360 附录 7,对于有支撑框架,K₂可取 1.0。因此可将对应的柱有效长度系数 K2 改为 1.0 (图 6),再次设计可得合理的应力比(图 7)。

当然,若本案例采用中国规范设计,相应中国规范的设计首选项可选择框架类型为有侧移或无侧移,程序会针对相应 的框架类型输出合理的计算长度系数,也就不存在需要用户自行设置计算长度系数的问题。

教值 顶 19 无支撑长度系数(主) 程序默订 20 无支撑长度系数(次) 程序默认 无支撑长度系数(LTB) 21 程序默认 有效长度系数K1(主) 程序默认 22 有效长度系数K1(次) 23 程序默认 24 有效长度系数K2(主) 25 有效长度系数 K2 (次) 26 有效长度系数K(LTB) 程序默认

S 钢框架设计覆盖项 - AISC 360-16

图 6 将 K2 修改后的钢框架设计覆盖项

图 7 钢框架柱打断并修改 K2 的应力比

编写:郑翔

梁的整体稳定系数与无支撑长度系数

本案例主要介绍采用 SAP2000 软件分析某悬挂结构时,无支撑长度系数对梁整体稳定系数的影响。

某悬挂结构(图1),设置了若干固定铰支座钢梁,该结构未铺设楼板,也未设置梁间支撑。

✓ 问题描述/PROBLEM

以上图红色钢梁为例,查阅该梁的设计细节(图 2),发现梁的整体稳定系数 Φ b 为 1.0,但是若按照钢标附录 C 计算, 其数值应该为 0.9 左右,请问这是啥原因?

Othe	r Moment Fa	ctors					
		Gamma	Beta m	Beta t	eta	phi b	Alpha ¹
Major	Bending	1.05	0.801	1.	1.	1.	1
Minor	Bending	1.2	0.799	1.	1.	1.	1
Sectio	n classific	ation (GBS	0017 3.5.1)				
	b/t	LambdaS1	LambdaS2	LambdaS3	LambdaS4	LambdaS5	Sectio
	Ratio	Limit	Limit	Limit	Limit	Limit	Clas
Flange	4.141	9.	11.	13.	15.	20.	Class S
Web	23.367	65.	72.	93.	124.	250.	Class S
Sectio	on classific	ation Para	meters (GB5)	0017 3.5.1)			
	E	psilon k	Sigma diff	Sigma max	Alpha 0		
Parame	ters	ī.	49.73	24.87	2.		
Specia	1 Width/Thi	ckness Rat	io Check (G	B50017 7.3.1,	GB50011 8.3	.2, 8.4.1)	
		b/t	b/t	b/t(Sei)	Ignore	Status	
		Ratio	Limit	Limit	b/t?	Check	
Flange		4,141	15.298		Yes	OK	
n						O A S	
web		23.367	51.489		Yes	OK	
Specia	l Width/Thi	23.367 ickness Rat	51.489 io Check Pa:		Yes	OK	
Specia	al Width/Thi	23.367 ickness Rat Ipsilon k	51.489 io Check Pa: Phi min	rameters N/(A*f)	Yes	OK	
Specia Parame	al Width/Thi F	23.367 Lokness Rat Opsilon_k I.	51.489 tio Check Pa: Phi_min 0.842	rameters N/(A*f) 1.000E-06	Yes Alpha 1.	OK Lambda 52.979	
Specia Parame Slende	al Width/Thi Eters erness Check	23.367 Ickness Rat Dpsilon k I. (GB50017	51.489 tio Check Par Phi_min 0.842 7.4.6, 7.4.	rameters N/(A*f) 1.000E-06 7, GB50011 8.	Yes Alpha 1. 3.1, JGJ99 7	OK Lambda 52.979	
Specia Parama Slenda	al Width/Thi Eters Frness Chec)	23.367 lokness Rat Dpsilon k I. (GB50017 Mue*L/i	51.489 io Check Pa: Phi_min 0.842 7.4.6, 7.4. Lambda 1	rameters N/(A*f) 1.000E-06 7, GB50011 8. Lambda (Sei)	Yes Alpha 1. 3.1, JGJ99 7 Status	OK Lambda 52.979 .3.9, 7.5.4)	
Specia Parame Slende	al Width/Thi F ters erness Check	23.367 ickness Rat Ipsilon k I. (GB50017 Mue*L/i Ratio	51.489 Sio Check Par Phi_min 0.842 7.4.6, 7.4. Lambda 1 Limit	rameters N/(A*f) 1.000E-06 7, GB50011 8. Lambda (Sei) Limit	Yes Alpha 1. 3.1, JGJ99 7 Status Check	OK Lambda 52.979 .3.9, 7.5.4)	
Specia Parame Slende Major	al Width/Thi ters rness Chec) Bending	23.367 lckness Rat Dpsilon k I. (GB50017 Mue*L/1 Ratio 42.579	51.489 Nio Check Par Phi_min 0.842 7.4.6, 7.4. Lambda I Limit 400.	 rameters N/(A*f) 1.000E-06 7, GB50011 8. Lambda (Sei) Limit	Yes Alpha 1. 3.1, JGJ99 7 Status Check OK	OK Lambda 52.979 .3.9, 7.5.4)	

图 2 钢梁设计细节

🚰 解决办法/SOLUTION

梁的整体稳定系数 phi_b 是根据《钢标》附录 C 进行计算的。规范规定等截面焊接工字形和轧制 H 形钢简支梁的整体稳定系数按下式计算

工程应用常见问题案例解析

$$\varphi_b = \beta_b \frac{4320}{\lambda_y^2} \frac{Ah}{W_x} \left[\sqrt{1 + \left(\frac{\lambda_y t_1}{4.4h}\right)^2} + \eta_b \right] \varepsilon_k$$

其中: $\lambda_y = \frac{l_1}{i_y}$,为梁在侧向支承点间对截面弱轴 y-y 的长细比。

对于本案例,如图 3 所示,该主梁长度为 2800mm,绕弱轴的回转半径为 18.9mm。由于该结构未铺设楼板, 也未设置梁间支撑,次梁对红色梁起不到侧向支撑的作用,因此其绕弱轴的长细比应为 2800/18.9=148.15。

但是查阅图 2 可知,绕弱轴的长细比为 52.979,远小于 148.15,说明设计时低估了 λ_y 。其原因是:程序将与红色主梁垂直的两排次梁默认为红色梁的侧向支承点,因此其长度 l_1 是取的梁端与次梁之间长度 1m。则相应的绕弱轴

对于中国规范的梁,其受压翼缘侧向支承点之间的距离,是通过构件长度乘以无支撑长度系数计算的。因此, 用户可将梁设计覆盖项中的无支撑长度系数改为 1.0 (图 4),表示取该梁的构件整体长度作为侧向支撑点之间的距 离,则可得到正确的长细比 *λ*, (图 5),进而可得到合理的整体稳定系数 phi_b。

一般来说,无支撑长度系数和有效长度系数是适用于压弯构件的验算,因此框架柱的设计细节会输出这两类长度系数。而对于受弯构件,虽然程序不输出这两类长度系数,但该数值依然会影响受压翼缘侧向支撑点之间的距离, 从而影响梁整体稳定系数的计算。

图 5 修改后的钢梁设计细节

工程应用常见问题案例解析

是否考虑剪切中心对杆件分析的影响

本例主要介绍 SAP2000 V24 版本中新增的默认考虑截面剪切中心选项,该选项对分析结果的影响。

该模型为一联 15m 的光伏支架,其结构布置如下图所示。

✓ 问题描述/PROBLEM

该模型分别采用 SAP2000 V21 和 SAP2000 V24 计算,计算完成后查看檩条(框架-3)在荷载组合"ZH3dead*1.3+(w+)*1.5+snow*1.05 下的挠度,具体结果如下图所示。可以看到在 SAP2000 V21 中"框架-3"的 2 方向的绝对挠度 值为-0.026047m,而在 SAP2000 V24 中"框架-3"的 2 方向的绝对挠度值为-0.049108m,两者相差接近一倍,这是为何?

图 2 檩条"框架-3"内力图

48

解决办法/SOLUTION

两个版本的计算结果不同是由于 SAP2000 V24 版本中,程序默认针对槽形截面和通用截面,新增关于剪切中心的控制选项,如下图所示。默认情况下, SAP2000 会考虑剪切中心偏移造成弯曲和扭转之间的耦合效应。但是在 v21 版本中默认是没 有考虑的,因此两者的结果会有差异。

截面名称	C105X55X15X1.5	显示颜色
注释	修改/显示	
1何尺寸		示意图
总高度(A)	105.	
总宽度(B)	55.	
厚度(t)	1.5	
半径 (R)	1.5	3 < 1
卷边高度(d)	15.	
		截而属性
Include Shear Center (Offset in Analysis	几何属性
(料) 屋 性	属性修正	时间相关属性
+ JTG-Q550g	✓ 修正系数	

对于剪心和弯心不重合的截面,考虑剪切中心偏移造成的主弯矩、剪力 V2 和扭矩之间的耦合效应后,可以更加真实的 模拟构件的响应,因此一般建议用户默认勾选 "Include Shear Center Offset in Analysis"选项。如果用户不需要考虑剪心的偏 移,也可取消该选项。

对于问题中的模型,在 SAP2000 v24 版本中,取消勾选"剪切中心的偏移的"选项,然后再次查看"框架-3"的 2 方向的绝对挠度值为-0.026047m,如下图所示,与在 SAP2000 v21 版本中计算的结果一致。

编写: 吕良

阶段施工分析时临时支座的模拟

工程应用常见问题案例解析

本例主要介绍在阶段施工分析中当采用 link 单元模拟临时支座出现的问题。

▲ 模型简介/MODEL

该模型为 20m 的预应力小箱梁桥,共有 6 片主梁形成一个整体。该桥小箱梁部分为预制构件,施工时,首先架设预制小箱梁,然后对桥面板湿接缝及横隔板进行浇筑,主要施工步骤如下图所示。

²问题描述/PROBLEM

对该模型进行阶段施工分析。在"湿接缝浇筑"阶段,在第一阶段"STAGE 1"进行了湿接缝和横隔板的浇筑,此时永 久支座两侧设有临时支座,如图-2"STAGE 1"所示,临时支座采用 link 单元模拟,该连接单元的六个自由度均设为固定。 在第二阶段"STAGE 2"需要拆除临时支座,拆完临时支座的布置如图-2"STAGE 2"所示。

图 2 湿接缝浇筑阶段

对该桥梁运行分析,在"湿接缝浇筑"工况"STAGE-1"和"STAGE-2"分别查看了永久支座的反力,如下图所示。以 边梁的永久支座为例,可以看到,在"STAGE-1"和"STAGE-2"永久支座的反力均为 385.58KN,拆除临时支座并没有导 致永久支座的内力发生变化,与实际情况不符。

图 3 湿接缝浇筑阶段支座反力

解决办法 /SOLUTION

该模型计算出错的原因为临时支座的定义方式错误。

该模型中临时支座采用连接单元"link"来模拟,约束条件是固定了六个自由度,形成了钢臂。此情况下,程序会将 link 单元两端的节点直接通过类似 body 约束在一起。常规的线性分析是非线性分析时,这种处理方法是没有问题的,但是在施 工阶段分析时,会导致 link 约束无法正常移除。因此施工阶段分析时,建议不要采用对 link 单元指定 fix (固定六个自由度) 的方式来模拟钢臂,可通过对 link 单元指定较大的刚度值来模拟临时支座,或者采用框架单元模拟。

这里对该模型进行修改,将 link 单元的刚度采用较大数值模拟,刚度值设为 1.0E+09 kN/m,设置如下图所示。关于连接 单元模拟刚性杆时刚度值的设置可以参考知识库文章"模拟刚性行为的刚度系数取值"。

Link/Support Type	/Support Type Linear ~ perty Name 临时支座			P-Deta Parameters Shear Couple Equal End Moments	
Property Name			Set Default Name		
Property Notes			Modify/Show	Modify/Show O Advanced Mo	
otal Mass and Weigh	t				
lass 0.			Rotational Inertia 1		
Weight	0.		Rotational Inertia 2	0.	
			Rotational Inertia 3	0.	
fness Values Us	ed For All Load Cases				
Stiffness	Is Uncoupled		Stiffness Is C	oupled	

修改模型后,重新分析计算,再次查看在"湿接缝浇筑"工况"STAGE-1"边梁永久支座的反力为 380.14KN, "STAGE-2"永久支座的反力为 2501.1KN,结果符合预期。

编写: 吕良

SAP2000 24.1.0 新增及改进功能

设计功能

•针对以下规范和结构设计类型改进弯曲系数 C1/C2 和 C3 的计算方法:

1) 基于欧洲规范 Eurocode 3-2005、意大利规范 NTC 2008 和 NTC 2018 的钢结构设计

2) 基于欧洲规范 Eurocode 3 1-3 2006 的冷弯薄壁型钢 结构设计

3) 基于欧洲规范 EN 1999:2007 的铝合金结构设计

•基于欧洲规范 Eurocode 2-2004 的混凝土壳配 筋新增裂缝校核功能,同时可以根据欧洲规范 Eurocode 1992-2:2005 附录LL 计算横向抗剪钢筋。

结构模型

- •新增和更新以下材料库和型钢截面库:
 - 1)新增基于印度规范的型钢截面库
 - 2) 更新基于中国规范的型钢截面库
 - 3)新增基于加拿大规范的材料库
- 指数型和双线性的粘滞阻尼器针对连接单元的轴向 自由度 U1 新增"固定长度的阻尼器"选项,主要 用于模拟粘滞阻尼器弹性段的力学性能。连接单元 由固定长度的阻尼器和可变长度的线性弹簧串联而 成,用户可指定线性弹簧的弹性模量和横截面面积。

输出与显示

• 进一步增强塑性较状态的图形显示效果

导入和导出

 SAP2000 与 Revit 的模型转换接口进一步增强, 支持分析链接和柱的基点偏移,也可以更好地处 理倾斜地基上的直墙。注意,上述新功能要求使用 CSiXRevit 2023 与 Revit 2023。

API 功能

• API为 SAP2000 的多实例连接提供了更多的控制 函数,新接口可以简化插件的开发流程,同时提高 外部.NET 客户端的执行速度。

中国设计规范相关的功能改进

- •修复了箱型截面钢构件次轴剪应力的计算问题。
- •钢梁按压弯构件设计时,改进了稳定验算公式 标注的对应性。程序内部会同时验算 GB50017 8.2.5 和 6.2.3,输出最不利应力比,之前总是标注 "GB50017 8.2.5",现在按实际结果标注。
- · 对钢构件单轴对称截面,完善其平面外稳定验算的 结果显示,不影响内部计算。
- •修复了型钢截面库文件的一些小问题。

ETABS + DC 隔 震 设 计 软 件

- 轻松实现全流程隔震设计

__抗规、新隔标、广东高规___
 __反应谱设计+随机模拟校准+时程校核的隔震设计整体解决方案
 __使捷的支座布置,直观的设计流程,丰富的结果表达___

CiSDesignCenter 2.1.0 新增及改进功能

国标补充功能

- 国标抗震设计采用多模型方法,根据用户设置分别处 理指标模型、抗风模型和抗震模型
- •界面菜单整理,与广东高规菜单保持一致
- •优化数据提取流程,避免重复从 ETABS 中读取计算 结果
- 增加了楼层力调整功能,用户可通过此功能查看各层 地震力调整系数、双抗侧力调整系数、薄弱层地震力 调整系数和剪重比调整系数,并可手动调整各个系数
- 优化了设计首选项与设计覆盖项的菜单界面,增加了 抗震构造等级、构件内力调整系数等选项设置
- 改进了构件设计组合,静力组合与抗震组合分别取自抗风模型与抗震模型,增加了楼层活荷载折减系数选项

新增及改进功能

减震相关功能

 新增了减震结构附加阻尼比计算功能,可实现规范 法、能量比法以及类比法三种方式,用户可在国标 模块的工具菜单中,使用此功能

模型转换

- •优化楼层较多时转换慢的问题
- •修复导入 SAP2000 模型楼层划分错误的问题
- •修复 YJK 墙开洞数据处理不正确的问题
- 修复读取 ETABS 模型后隔震层连接单元的楼层错 误问题

隔震相关功能

 用户使用随机模拟法时,新增提取任意构件的平均 内力以及连接单元的变形功能

点击了解更多功能特性

新增及改进功能

•

CiSGTCAD V2.1.0 新增及改进功能

- 增加独立设备支架和独立避雷针建模和计算模块
- 添 加 Revit 接 口 (支 持 Revit2016 到 Revit2019) 及 Bentley(OBD) 接口程序
- •添加 Bentley OBD 数据接口导出
- 增加最新版 SAP2000 的调用
- 修改相关 bug 和优化超大模型时软件响应速度

ETABS+DC 隔震设计 / 减震设计培训营圆满落幕

近年来,国家陆陆续续推行了减隔震技术相关的政策,对于高烈度区的学校、医院等人员密集公共 建筑均强制采用减隔震技术,因此减隔震分析成为了近期的"热点话题",各大设计院都在学习、接触 相关技术。

本次 ETABS+DC 隔震 / 减震设计培训营为了协助大家更好、更快地掌握减隔震技术,首次采用"专题讲解+视频导学+群内答疑"的教学形式,两个主题的培训营为期共 20 天,分为两大阶段。第一阶段通过隔震 / 减震设计操作视频导学,引导学员上手使用软件,消化理解减隔震设计流程;第二阶段进行专题讲解,介绍 FNA 法的原理和隔震 / 减震结构分析设计常见问题,并布置实操作业,考核学员本身

对隔震/减震设计的理解。培训全程有技术工程师 在群内答疑解惑,随时为学员清除学习障碍。最 后一天由技术总监吴文博点评学员作业,汇总答 疑培训期间学员的常见问题。

本次培训营共有一百余人报名,既有三年以 上软件使用经验的老用户,也有初学者,总体来 看学员参与度都非常高,无论是工作日还是周末, 群里响应一直很热烈,学员对课程的满意程度达到 90%以上,并反馈在软件使用、减隔震设计流程、 关于 FNA 法的原理、对反应谱法/随机模拟校准 法/时程分析等的理解等方面都有所收获,尤其是 最后汇编的常见问题文档,大家表示如获至宝。

供稿:刘慧璇

活动报道

WindPower 智慧风基设计软件发布会活动报道

"十四五"规划提出推进能源革命,建设清洁低碳、安全高效的能源体系,提高能源供给保障能力。 如今我国已是全球风电和光伏发电规模最大、增速最快的国家。

我国郑重提出争取 2060 年前实现"碳中和"目标后,新能源产业发展的动力将更充足。这意味着风电、光伏仍有较大增量空间。风电基础承载着风电主体(组件),影响组件的运行安全及建设投资,选择合适的风电基础不但能降低工程造价,也会减少后期养护成本。

基于市场需求原因,筑信达受阳光新能源开发股份有限公司委托开发 WindPower 智慧风基设计软件发布会并于 2022 年 11 月 22 日举办了线上发布会。

发布会很荣幸邀请到同济大学建筑设计研究院(集团)有限公司高级工程师黄冬平和中国华能集团 清洁能源技术研究院有限公司勘察设计部土建主管邓明基,分别做了风电基础设计常见问题分享和陆上 新型筒形风机基础开发及应用关键技术研究的主题报告,大家对风电基础设计中的问题和新型基础应用 实际情况踊跃提问,类似荷载分项系数如何取值、疲劳验算如何考虑、新型基础咬合桩问题、桩基承载 力验收等问题。

发布会也特别邀请到阳光新能源开发股份有限公司高级工程师张艳杰对 WindPower 智慧风基软件 及工程应用做了相关介绍,并通过筑信达软件开发工程师孙雪艳在会上演示和操作 WindPower 智慧风 基软件,让大家对 WindPower 智慧风基有了直观和深入的了解。大家主要关注问题包括软件如何考虑 地震工况、地基刚度如何模拟、圆环式台柱如何设计、软件视图配筋图如何绘制等。答疑环节各位嘉宾 对大家提出的问题一一解答,会后整理了相关讲义和问题汇总分享给参会工程师。

本次发布会通过腾讯会议和视频号直播举办,参会人数共计约近 600 人;会议最后进行了互动抽 奖环节,抽取了四位幸运工程师。至此,本次发布会圆满结束。

2023 筑信达用户大会 1 号通知

北京筑信达工程咨询有限公司致力于提供优质的科技产品与服务,将先进的信息技术融入古老的土木行业,助力提升行业的生产效率。筑信达的软件产品广泛应用于土木行业的多个领域,例如在工业、交通、市政、新能源等工程建设中发挥重要作用的 SAP2000;用于建筑结构设计及抗震性能化分析的标杆产品 ETABS、SAFE、Perform3D;在国家基础设施建设、一带一路项目中被广泛应用中岩土数值分析软件 PLAXIS、一体化桥梁软件 CSiBridge、施工图及 BIM 应用软件 CSiDetail/CSixRevit/CSixCAD 等。同时,筑信达公司开发的结构设计软件 CiSOpenSteel、截面设计软件 CiSDesigner 等为各行业的土建工程师提供了更便捷、智能的设计工具。

为了更好地为我们的客户提供技术服务,筑信达将于 2023 年 4 月举办筑信达软件用户大 会。会议将贯彻"分享、交流、应用、展现"的理念,涵盖结构、桥梁和岩土等三大专业,致 力于为中国工程师建立工程技术应用的交流平台,共同探讨交流工程设计与软件的应用,展 示工程设计领域的最新进展和最具挑战标志性工程的设计理念,促进行业科技的发展。

筑信达用户大会不仅是一场知识碰撞的盛会,经验交流的盛会,也是一场对于多年来一 直支持和信任筑信达的新老用户的答谢盛宴。

在此,筑信达诚邀您莅临会场,共享盛宴,并欢迎您参与筑信达软件工程应用成果有奖 征集,您将有机会在大会中与众多业内精英分享成果以及使用筑信达软件的真知灼见。我们 希望通过此次用户大会加深与各行业内工程师之间的互相了解,同时也希望您通过这次技术 交流会有所收获。

活动简介

"工欲善其事,必先利其器",优秀的工程软件不仅仅要实现重复劳动的智能化,更要为 工程师的设计创新提供分析平台和数据支持。经过十年的发展,我们很高兴地看到,筑信达 的客户群中,有一大批优秀的工程师正创造着奇迹。他们从项目需求出发,基于扎实的专业 知识,通过大量细致的计算分析,不断攻克项目设计中的难题,让貌似不可能的方案成为现 实。同时,还有不少"土木+编程"的跨界工程师,利用 API 技术让工程软件"为我所用", 重新定义行业效率,激发新的行业活力。

本次活动面向所有应用筑信达软件的工程师, 征集解决工程问题的软件应用方案, 比如 工程设计、科研课题、二次开发成果等等。涉及的工程类型包括但不限于: 超高层\高层结构 分析、减震/隔震设计、大跨空间结构设计、工业类特殊结构设计、市政交通结构设计、地下 空间开发、新能源开发建设、岩土工程数值分析、新技术应用、规范对比研究等等。

我们将在 2023 筑信达用户大会上对入围的优秀应用成果进行展示、交流、颁奖,希望届 时与众多筑信达软件应用同好们欢聚一堂、交流分享!

注册报名

登记注册完成报名, 在征集活动截止时间前完成资料提交即可。 https://support.cisec.cn/#/Meeting_Core/MeetingModel

参与者福利

媒体宣传

《建筑结构》杂志及公众号公布获奖者名单

筑信达发布新闻公布获奖者名单、文章将在筑信达网官、公众号、《技术通讯》发布

入围项目

- 将在筑信达网官、公众号、《技术通讯》展示项目简介
- 获奖者精致证书、奖品、
- 获邀相关软件评测顾问

专家评审优秀项目

- 作为特邀演讲嘉宾,将在2023年筑信达用户大会、网络达人汇演讲
- 获奖者精致奖杯、奖品、证书
- 参加 2023 年筑信达用户大会活动 (活动全程免费)
- 获邀相关软件战略顾问

征集时间

- 1. 截止时间: 2023年2月27日
- 2. **决赛入围者通知**: 2023 年 3 月 15 日
- 3. 获奖者名单: 2023年4月筑信达用户大会颁奖典礼公布

如果你使用过我们的产品 如果你喜爱工程分析

或许你正困惑其中 或许你已成果丰硕

欢迎来这里发声!

这里 可以提问 也可以"炫技"

可以严肃 也可以顽皮

题材不限 风格不拘

只要与它们相关 SAP2000、ETABS、SAFE、 Perform3D、CSiBridge、PLAXIS 请速速

筑信达《技术通讯》是面向广大土木工 程师的技术刊物,内容覆盖筑信达全线产 品(CSI结构/桥梁产品、PLAXIS岩土产品 、筑信达自主开发产品)的最新动态、技 术知识。旨在帮助工程师们更好地将软件 产品应用于工程实践,同时也为工程师们 切磋数值分析技术、分享工程应用经验提供 平台!

欢迎广大工程师踊跃投稿!

稿件一经采纳,作者将有机会获赠:

- •技术专著
- •产品单机版免费限时使用权
- •高级培训免费名额

在线支持 support.cisec.cn

?

视频教程 i.youku.com/bjcisec