

施工图交互编缉

www.cisec.cn

林设计路

住施工图

ETABS + DC 隔震设计软件 —— 轻松实现全流程隔震设计

CiSDesignCenter 筑信达结构设计软件

- 筑信达DC隔震设计软件的隔震解决方案
- 筑信达DC隔震设计软件对三本设计规范的实现
- SAP2000中目标位移法的找形分析功能
- 钢筋混凝土柱的临界轴压比与轴压比限值(转载)
- 工程应用常见问题案例解析

办:北京筑信达工程咨询有限公司 主

编: 李 立 主

责任编辑: 王 希、张志国

编:张翠莲、王 蓉 美

北京筑信达工程咨询有限公司

地址:北京市石景山区古盛路 36 号泰然大厦 4 层 408 室 电话: 010-68924600 技术热线: 010-68924600-200 传真: 010-68924600-8 网址: www.cisec.cn 在线支持: support.cisec.cn 邮箱: support@cisec.cn(技术支持)

sales@cisec.cn(产品销售)

筑信达武汉技术中心 地址: 武汉市洪山区武珞路 717 号兆富国际 1308 室 技术热线: 027-8788 6890 / 8788 6891

区域代理

北方区

北京华思维泰克科技有限公司 联系人:王博 手 机: 159 1060 8694

华东区

上海江图信息科技有限公司 联系人: 薛平 手 机: 137 0172 6345

华南区

广州倍益软件技术有限公司 联系人:田茂金 手机: 137 6071 9009

华中区

武汉百思通科技有限公司 联系人: 叶亮 手机: 139 9561 6575

西南区

金橡果科技成都有限公司 联系人: 刘宇 手 机: 185 1282 0985

C 目 录 ontent

一 专题文章 一

語信达

筑信达 DC 隔震设计软件的隔震解决方案	1
筑信达 DC 隔震设计软件对三本设计规范的实现	9
钢筋混凝土柱的临界轴压比与轴压比限值(转载)	26
SAP2000 中目标位移法的找形分析功能	17
一 工程应用常见问题案例解析 一	
某平台结构分析异常的原因	30
使用非线性时程分析模拟非线性静力加载	33
施工阶段划分对收缩徐变的影响	36

- 38 索建模的初始几何位置
- 地下管廊柱轴力"上大下小"的原因 41
 - 净 / 毛面积比对檩条不起作用 43
 - 核心筒地下部分整体位移角提取 45
 - 转换模型周期差异的原因 48
 - 梁柱加腋节点的强度对比 50
 - 桥台纠偏分析结果异常 52
- 真空预压分析中不正确的潜水位结果 54
- 地基处理及围堤施工过程分析计算报错 57
 - 围堰降水模拟中的渗流计算设置问题 59
 - 新版发布 61
 - 活动报道 66
 - 69 征稿启示

筑信达 吴文博

自《建筑隔震设计标准》GBT 51408-2021(后简称新隔标)实施以来,隔震结构的设计迅速成为了工程师关注的热点,也引发了大量的思考。实模态反应谱法与复模态反应谱法有什么区别?实模态反应谱法与复模态反应谱法分别适用在哪些结构上?如何依据新隔标进行隔震支座的迭代?反应谱分析有没有局限性,有更好的解决方法吗?筑信达 DC 隔震设计软件(后简称 "DC")针对这些问题给出了一个完整的解决方案,采用反应谱法进行设计、随机模拟法进行校准,以及时程分析法进行校核,如图1所示。

图 1 筑信达 DC 隔震设计软件隔震设计方案

工程师对反应谱分析更加熟悉,也易于判别反应谱分析的计算结果,使用也更加方便,所以反应谱分析仍然是隔震设计的主要手段。但是由于反应谱分析存在着一些不可避免的局限性,DC隔震设计软件同时提供了随机模拟法对反应谱分析结果进行校准。随机模拟法假定更少,更趋于真实,计算结果精度更高,所以校准后会将反应谱的分析结果调整至与随机模拟法的分析结果一致。软件还可以根据规范要求,通过选波工具选出合适的天然波和人工波,进行时程补充验算,此时会将校准后的反应谱分析结果与时程分析的结果进行包络,最终用于构件设计。构件设计完成后,软件可以一键生成弹塑性模型,进行最后的大震弹塑性时程分析。

现对 DC 的隔震设计解决方案的技术要点进行介绍。

1. 实模态反应谱法与复模态反应谱法的区别

CiSDesignCenter

达结构设计软件

对于隔震结构,一个显著的特点是结构的耗能集中于底部隔震层,隔震层的等效阻尼会显著大于上部结构,图 2 为隔震 结构中震时程分析的能量图,其中黄色部分为隔震层耗能,粉色部分为上部结构阻尼耗能。

图 2 典型隔震结构的能量图

当上部结构与下部结构阻尼不相同时,反应谱分析或线性模态时程分析将面临非比例阻尼的问题。现引用文献[1]中的一 个例子阐述非比例阻尼的问题。

如图3所示,当同一个结构中,上下两部分的阻尼不相同时,在两种结构相交的位置,将会出现交叉耦合项。

图 3 非比例阻尼结构

此时模态化的阻尼矩阵将是满阵,而非对角矩阵,因此将无法进行振型分解。 比例阻尼结构的模态化阻尼矩阵:

	$\int \xi_1 \omega_1 M_1$	0	0	۲	
$C = \Phi^T \circ \Phi = 2$	0	$\xi_2 \omega_2 M_2$	0		
$\mathbf{C} = \mathbf{\Psi} \mathbf{C} \mathbf{\Psi} = 2$	0	0	$\xi_3 \omega_3 M_3$	÷	
	L:	÷	÷	:]	

非比例阻尼结构的模态化阻尼矩阵:

 $\boldsymbol{C} = \boldsymbol{\Phi}^T \, \mathbf{c} \, \boldsymbol{\Phi} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & \cdots \\ C_{21} & C_{22} & C_{23} & \cdots \\ C_{31} & C_{32} & C_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$

在 ETABS 中,处理非比例阻尼结构时,采用的是实振型强行解耦,忽略交叉耦合项,这可能会带来一定的误差。且上下 结构的阻尼比相差越多,误差可能会越大。

$$\boldsymbol{C} = \boldsymbol{\Phi}^T \ \mathbf{c} \ \boldsymbol{\Phi} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & \cdots \\ C_{21} & C_{22} & C_{23} & \cdots \\ C_{31} & C_{32} & C_{33} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

而采用复模态方法则可以更好的处理非比例阻尼问题,限于篇幅,可参考文献[1]与新隔标中的相关内容。但是我们应该 注意到,如何处理好非比例阻尼只是隔震设计问题中的一个,并不是全部。

2. 反应谱法在隔震结构中的适用范围

依据新隔标 4.1.3 条及其条文说明,反应谱法将作为隔震结构的主要分析方法,时程分析作为补充计算方法。将其汇总后如图 4 所示。

计算方法	低矮隔震结构	多层隔震结构	高层隔震结构	复杂隔震结构
底部剪力法	适用	可用	不适用	不适用
振型分解反应谱法 (CQC)	适用	适用	可用	可用
振型分解反应谱法 (CCQC)	适用	适用	适用	适用
时程分析法	适用	适用	适用,且必须采 用(60m以上)	适用,且必须采用

图 4 隔震结构的分析方法与适用范围

虽然复模态反应谱法较实模态反应谱法和底部剪力法更为优秀,适用性更广,但是其理论更为复杂,难于复核,工程师 上手难度会更大。而实模态反应谱法和底部剪力法更为工程师所熟悉,易于判断其结果的合理性,并且在一些高度不大的结 构中也有足够的精度,因此也有很多的应用场景。而对于较高或复杂的隔震结构,由于反应谱方法的一些自身局限性(后文 有介绍),即便采用复模态方法也可能会引起一定偏差,此时通过时程分析进行校核是非常必要的。

3. 隔震支座有效刚度与有效阻尼的迭代

依据新隔标 4.2.2 条,应按不同地震烈度作用时的设计反应谱进行迭代计算确定各个支座的有效刚度与有效阻尼值。目前 DC 隔震设计软件中可实现上述迭代,其有效刚度与有效阻尼的计算按下述公式确定。

隔震支座的有效刚度值为:

$$K_e = \frac{F_d}{\chi_d}$$

隔震支座的有效阻尼值为:

$$C_e = \frac{E_H}{\pi \omega x_d^2}$$

$$E_H = 4(x_1 - x_1)(1 - \alpha)$$

$$E_H = 4(x_d - x_y)(1 - \alpha) F_y$$

上述公式中的参数含义可见图 5。 但是,按照上述方式进行迭代时,会出现一些略显困惑的情况,

文献[2]中,曾给出了隔震层等效参数的迭代过程,如图6所示。

图 5 隔震支座有效刚度与有效阻尼的确定

	表 2	隔晨层等效参数迭代	
Table 2	Equivalen	t parameter iteration of isola	ation layer
隔震层	层阻尼比/	隔震层最大位移/	等效刚度
	<i>c</i> 7		

迭代	国期/-	隔震层阻尼比/	隔震层最大位移/	等效刚度/	阻尼系数/
次数	円 丹]/ S	%	mm	$(kN \cdot m^{-1})$	$(kN\!\cdot\!(m\!\cdot\!s^{-1})^{-1})$
1	_	5.00	220	1 981	295
2	3.35	13.12	181	2 150	328
3	3.27	13. 52	172	2 195	345
4	3. 25	13.95	168	2 211	351
5	3.24	13.98	167	2 217	353
6	3.24	13.99	167	2 218	354

图6 隔震层等效参数迭代

从上表中,可以发现,当隔震层最大位移逐渐减小时,隔震层阻尼比和阻尼系数反而增大。这似乎与预想的不一样,为 什么阻尼器变形越大、耗能越多但是阻尼比却在下降呢?在文献[3]中,对这个现象给出了解释:当隔震支座刚刚屈服时,塑 性变形较小,滞回曲线呈沿纵向细长型,此时隔震层阻尼比较小;此后塑性变形逐渐增大,滞回曲线也逐渐变得丰满,隔震 层的阻尼比也逐渐增加;当塑性变形增加到一定程度之后,由于隔震支座屈服后刚度较小,滞回曲线将呈沿横向细长型,此 时隔震层的阻尼比反而会逐渐减小。所以隔震层的阻尼比会随变形呈现出先增加后减小的趋势。

文献[3]中还汇总了14种隔震支座的等效方法,如图7所示:

Table 1 Summary of the El	methods considered in this study.		
EL methods	Hysteretic type	Post-to-pre yield stiffness ratio α	Ductility ratio μ
R&H [18]	Bilinear	$0.00 \leqslant lpha \leqslant 1.00$	1 < <i>µ</i>
G&S [23]	Takeda without hardening	$\alpha = 0.00$	1 < µ
JPWRI [25]	Bilinear	$0.00 \leqslant lpha \leqslant 1.00$	1 < µ
Kow [26]	Takeda with post-yield hardening	α = 0.05	$1 < \mu$
J&C [27]	Bilinear	$0.05 \leqslant lpha \leqslant 0.15$	$1 \le \mu \le 40$
D&B [16]	Bilinear	$0.01\leqslantlpha\leqslant 0.2$	$2 \leq A_p W/Q_y \leq 10^*$
J&O [28]	Bilinear	$0.05 \leqslant lpha \leqslant 0.15$	$1 \le \mu \le 30$
ASE [29]	Bilinear	$0.00 \leqslant lpha \leqslant 1.00$	1 < μ
Iwan [30]	Elastic-Perfectly Plastic	$\alpha = 0.00$	$1 \le \mu \le 8$
H&S [31]	Bilinear	α = 0.05	$1 \le \mu \le 8$
H&C [32]	Bilinear	$\alpha = 0.15$	$2 \leqslant \mu \leqslant 50$
ASD [33]	Bilinear	$0.00\leqslantlpha\leqslant1.00$	$1 < \mu$
K&B [34]	Elastic-perfectly plastic, slightly degrading, moderately degrading, slip, origin-oriented, bilinear elastic	-	$2 \leqslant \mu \leqslant 8$
G&I [35]	Bilinear, stiffness degrading, strength and stiffness degrading, pinching	-	$1.25 \leqslant \mu \leqslant 10$

Note: A_p is the peak ground acceleration, W is the weight acting on isolator and Q_v is the characteristic strength.

图 7 14 种等效线性化方法

这 14 种方法得到的等效阻尼和等效周期如图 8 所示,可以看出,对于等效阻尼,不同方法的等效阻尼值的大小,以及 随支座延性的变化规律都有很大区别,而等效周期的差异则相对较小。

图 8 不同延性比下,隔震支座的等效阻尼和等效周期

目前 DC 所采用的等效方法是 R&H 法,而文章中推荐的是 G&I 和 D&B 方法。与 G&I 和 D&B 方法相比, R&H 法的阻 尼比在隔震支座变形较小时,相对偏大不少,在隔震支座变形较大时比较接近;在等效周期上则差异不大。

4. 反应谱方法的局限性

由于反应谱方法仅适用于线性分析,而隔震支座在地震作用下常常出现强非线性行为,因此要将反应谱法推广到隔震结构中必然伴随着"等效",而这些等效往往带有一些假定,可能与实际情况不尽相符。并且反应谱自身也存在一些假定,使得反应谱方法显得不是那么"完美"。

1、隔震支座使用单自由度体系的公式进行等效。通常来讲,隔震结构第一阶模态的质量参与系数非常高,一般会高于 90%, 因此即便按单自由度体系去等效,仍然有很好的精度。但是就一些高层隔震结构的时程分析的结果来看,高阶模态的响应还 是比较显著的,此时使用单自由度体系的公式进行等效可能会存在一定的问题。

2、等效方法的确定。在本文第3节中已经对此有所讨论,由于不同的等效方法考虑了地震动特性、场地特性等因素,其 等效的结果差异很大。

3、反应谱理论,通常假定地震作用为平稳的随机过程,并且假定结构总响应峰值系数与各阶振型峰值响应系数相等,这本身就会引入一定的误差。具体可见文献[4]。

4、用线性等效非线性是否合理?如图9所示,典型的隔震支座滞回曲线通常并不是对称的,使用最大变形作为等效刚度 和等效阻尼的依据是否合理?而且滞回曲线在再加载和卸载时,刚度明显要大于等效刚度,这可能使结构激发出更多的高频 成分,这在反应谱分析中也难于考虑。

图 9 典型的隔震支座滞回曲线

5、反应谱法的推导过程采用了小阻尼比假定,即有阻尼频率近似等于无阻尼频率,此外规范反应谱一般都是给出 5%的标准反应谱,而相关的阻尼调整公式一般只适用于 3%~7%的情况。且不同规范所给出的阻尼调整系数也不尽相同,例如新隔标与广东高规之间就有很大差别,还有一些学者也提出了一些公式,如 Newmark&Hall 公式和秋山宏公式。

Newmark&Hall 公式:

CiSDesignCenter

$$\frac{S_{a,\xi_2}}{S_{a,\xi_1}} = \frac{0.42 - 0.41 \ln \xi_2}{0.42 - 0.41 \ln \xi_1}$$

秋山宏公式:

$$\frac{S_{a,\xi_2}}{S_{a,\xi_1}} = \frac{1 + 3\xi_1 + 1.2\sqrt{\xi_1}}{1 + 3\xi_2 + 1.2\sqrt{\xi_2}}$$

为了直观的比较这些方法的差别,我们以设防烈度 8 度,II类场地,地震分组为第二组为例,比较阻尼对反应谱函数的 衰减情况,如表 1 所示。

Sa(T,ξ)	新隔标	广东高规	Newmark & Hall	秋山宏
Sa(2s,5%)	0.1057	0.1125	0.1057	0.1057
Sa(2s,20%)	0.0776	0.0629	0.0693	0.0702
衰减百分比	26.6%	44.1%	34.4%	33.6%
Sa(3.5s,5%)	0.0639	0.0643	0.0639	0.0639
Sa(3.5s,20%)	0.0496	0.0359	0.0419	0.0424
衰减百分比	22.4%	44.1%	34.4%	33.6%
Sa(5s,5%)	0.0463	0.0450	0.0463	0.0463
Sa(5s,20%)	0.0373	0.0277	0.0304	0.0308
衰减百分比	19.5%	38.5%	34.4%	33.6%

表1不同计算方法下阻尼对反应谱函数的衰减情况

从表中可以看出,Newmark&Hall 方法与秋山宏方法,阻尼对反应谱函数的衰减百分比相当,在四种方法中居中;广东高规方法衰减的最多,而新隔标的方法衰减的最少。广东高规与新隔标中由阻尼比引起的反应谱函数的差别已经无法忽视,会对隔震结构的设计产生明显影响。

由上述内容可以看出,即便使用复模态,反应谱法也存在上述的一些局限性。那么,有没有更能反映隔震结构真实的地 震响应的分析方法,同时也便于在工程设计中应用?

5. 随机模拟法

随机模拟法由华南理工大学苏成教授等人提出,现被广东高规采用,详见文献[5]。随机模拟法先依据规范反应谱生成统 计意义上完全等效的大量人工模拟地震波(不少于 500条),然后采用时程分析直接进行求解,目前 DC 提供了"FNA 法"和 "时域显式法"两种方式进行求解,这两种方法的计算结果具有非常好的一致性,见图 10。最后,依照随机模拟法计算得到 的楼层剪力平均值校准反应谱方法的楼层剪力,计算得到校准系数后再对构件内力进行调整,再进行构件设计。基本流程可 参考图 11。

图 10 某结构 FNA 法与时域显式法的基底剪力对比

图 11 随机模拟法基本流程(摘自苏成教授 PPT)

随机模拟法采用了大量地震波进行时程分析,会导致分析时间相 较于反应谱方法大幅增加,但是由于 FNA 法与时域显式法极高的分析 效率,在工程实践中仍然是可以接受的。以下为某实际工程中随机模拟 法的分析总时间。

某 16 层框剪结构,如图 12,长 127 米,宽 25 米,高 67 米。抗震 设防烈度为 8 度,连接单元共 131 个,其中非线性连接单元 74 个。

机器配置: AMD Ryzen7 3700X, 16G 内存。

随机模拟法采用人工波 500条,人工波时长 20s,时间间隔 0.01,同时考虑 X和 Y两个方向共 1000个工况。分析方法采用 FNA 法。计

算总时长 (含结果提取时间): 1 小时 42 分钟。

随机模拟法的优点在于无需任何等效,直接采用非线性时程分析 进行求解,最大程度地考虑了隔震结构的非线性行为;在人工模拟地震

图 12 某框剪结构 ETABS 模型

波时引入了均匀调制函数用于考虑地震动的非平稳特性;无峰值因子一致性假定等等。相比于反应谱法,随机模拟法可以提供更为准确、可靠的计算结果,所以 DC 隔震软件中采用了"层剪力"校准的方法,也就是说将反应谱的计算结果调整至与随机模拟法的计算结果相同。这样在 DC 隔震设计的解决方案中,反应谱分析仅作为一个载体,本质上不依赖于采用何种等效方法以及使用实模态或复模态进行反应谱分析。

6. 算例对比

现以三个算例,对比一下实模态反应谱分析、复模态反应谱分析(CCQC来自于 PKPM 计算结果)以及随机模拟法分析 (使用 FNA 法)的计算结果,以下结果均是针对新隔标规范。

案例 1: 某 7 层框架结构,抗震设防烈度为 9 度,设计基本地震加速度为 0.4g,设计地震分组为第三组,场地土类别为 II 类,模型如图 13。其中 X 向楼层剪力计算结果如图 14 所示。

案例 2: 某 16 层框剪结构,抗震设防烈度为 8 度,设计基本地震加速度为 0.2g,设计地震分组为第一组,场地土类别为 III类,模型如图 15。其中 X 向楼层剪力计算结果如图 16 所示。

案例 3: 某 15 层剪力墙结构, 抗震设防烈度为 8 度, 设计基本地震加速度为 0.2g, 设计地震分组为第二组, 场地土类别为III类, 如图 17。其中 X 向楼层剪力计算结果如图 18 所示。

从上面的三个案例我们可以得出一些结论:

- 同一结构,采用实模态反应谱法计算得到的基底处剪力与采用复模态反应谱法的基本相当,而采用随机模拟法计算 得到的基底剪力要小于采用复模态反应谱法的。
- 采用实模态反应谱法计算得到的各层楼层剪力呈直线型,这与实振型第一阶质量参与系数很高(通常到达 90%以上), 且变形集中于隔震层有关。复模态反应谱法与随机模拟法的楼层剪力呈外凸的曲线状态,而随机模拟法外凸更加严 重,有更多的高阶模态响应。
- 对于高度不大的结构,三种方法计算得到的各层楼层剪力差别不大,使用实模态反应谱方法分析也可以得到足够的 精度。
- 4、对于较高的结构的上部楼层,采用实模态反应谱法计算得到的楼层剪力最小、采用复模态反应谱法次之,采用随机 模拟法最大。

7. 时程分析校核

随机模拟法虽然能够很好的对反应谱法进行校准,但是随机模拟法使用的是人工波,并不能完全反映天然波的一些特性,因此对于一些重要工程进行补充时程分析校核是非常必要的。时程分析校核一个很重要的部分在于选波,对此新隔标 4.2.4 条中有详细的规定,DC隔震设计软件中的选波工具也实现了大部分条款。但是对于 4.2.4.3 款,要求人工波的生成应考虑 5%阻尼下反应谱和 20%阻尼比下反应谱进行选波,DC隔震设计软件中并未考虑。

人工波的生成会涉及到地震动反应谱和地震动功率谱,反应谱是某一地震作用下不同动力特性的单自由度结构反应最大 值的集合,由于反应谱是对地震动下结构响应的描述,因此会受到阻尼的影响;而功率谱是将地震动视为平稳随机过程时, 在频域的描述形式,它表征的是地震动的能量在各频段内分布的相对关系,由于功率谱是对地震动的描述,因此不会受到结 构阻尼的影响。我们应当注意到阻尼是结构的特性而不是地震动的特性,所以从逻辑上讲,规范中不同阻尼比的反应谱对应 的等价地震动功率谱应该是相同的。

但事实上,若以阻尼比为 5%的反应谱对应的等价地震动功率谱为基准,当考虑阻尼比范围为 3%~7%时,新隔标绝对加 速度反应谱所对应的等价地震动功率谱与该基准差别不大;而当考虑阻尼比为 10%以上时,新隔标绝对加速度反应谱所对应 的等价地震动功率谱与该基准则存在较大差别。这说明新隔标绝对加速度反应谱的阻尼调整系数计算公式可能并不适用于大 阻尼情况。

8. 小结

本文介绍了筑信达 DC 隔震软件的隔震设计方案,即采用随机模拟法对反应谱法的层剪力进行校准,再辅以时程分析方 法对设计结果进行校核的整体思路。这个方法对隔震结构的等效线性化方法及实模态或复模态的反应谱法都不敏感,换言之, 采用随机模拟法对反应谱法进行校准,其最终结果不依赖于反应谱分析采用实模态还是复模态,以及等效线性化采用何种方 法,尽可能避免了反应谱分析的局限性,能够真实地反映隔震结构在地震作用下的响应,同时可以方便地进行构件设计。

参考资料

- [1] Anil K.Chopra 结构动力学 (理论及其在地震工程中的应用第 5 版) [M].2020
- [2] 滕晓飞,谭平等,基于性能的隔震结构直接设计方法[J],沈阳建筑大学学报,2020
- [3] Tao L, Zordan T, Briseghella B, et al. Evaluation of equivalent linearization analysis methods for seismically isolated buildings characterized by SDOF systems

[J]. Engineering Structures, 2014, 59: 619-634.

- [4] 黄志坚,苏成,谭平,马海涛,建筑隔震结构地震响应计算的层间剪力校准系数法[J],建筑结构学报,2020
- [5] 广东省标准 DBJ/T 92-15-2021《高层建筑混凝土结构技术规程》[S],2021
- [6] GBT51408-2021《建筑隔震设计标准》[S],2021

筑信达 DC 隔震设计软件对三本设计规范的实现

筑信达 刘慧璇

近年来,国家大力推广隔震技术的应用,并出台了一系列相关政策。2021年9月1日实行的《建设工程抗震管理条例》 中强制高烈度地震区学校、医院等人员密集公共建筑采用减隔震技术进行设计,这使得减隔震技术得到了进一步的推广。与 此同时,《建筑隔震设计标准》(GB/T 51408-2021)(以下简称"新隔标")^[1]推出,通过刚度和阻尼比迭代实现了局部非线性 的等效线性化,提出了整体分析设计法,与《建筑抗震设计规范》(GB50011-2010)(以下简称"抗规")^[2]的分部设计法不 同。此外,广东省标准《高层建筑混凝土结构计算规程》(DBJ/T 15-92-2021)(以下简称"广东高规")^[3]也采用了整体分析设 计法。不同规范的基本设计目标不同,新隔标和广东高规提出需要进行中震下的性能化设计,抗规则为小震设计。此外,每 个规范的隔震设计都涉及了多个分析模型。

为此,我们研发了筑信达 DC 隔震设计软件(基于"CiSDesignCenter 结构设计软件"发展而来,以下简称 DC)。它作为 ETABS 的前处理软件,可以便捷地完成隔震支座布置,根据规范需求生成多个模型,同时,它作为 ETABS 的后处理软件, 可以基于 ETABS 的分析结果,根据规范设计构件,绘制施工图,验算隔震层,整理输出隔震报告。除此之外,DC 引入了"随 机模拟法",避免了复模态和实模态都无法规避的"峰值因子一致性"假定;DC 通过"随机模拟法"对反应谱分析的楼层剪 力进行校准,避免了等效线性的误差,得到更真实的结构响应;通过补充时程校核,实现了反应谱与时程工况的包络设计。

DC 涵盖了新隔标、抗规、广东高规三个规范的全流程隔震设计。在该软件中,新增了一个"隔震工程"的概念,非隔震 模型、中震模型和大震模型的所有数据和结果都存储在"隔震工程(.det 文件)"中,用户可通过读取"隔震工程"查看任一 模型的信息。在 DC 界面中,按从左到右的顺序依次操作,即可完成隔震设计。如下图所示,对于新隔标和广东高规,通过 "隔震前处理"菜单生成隔震模型,通过"反应谱分析"菜单迭代得到等效线性模型,通过"时程分析"菜单对反应谱结果 进行校准/校核,接着设置"设计选项",完成柱、墙、梁、板构件的设计与出图,通过"钢筋放样"菜单统计材料用量,最后 在"大震分析"菜单中完成支墩验算、支座校核,并输出隔震报告。对于抗规,通过"隔震前处理"菜单生成隔震模型,并 通过 DC 选波,完成时程分析,计算"减震系数",接着完成上部结构的小震设计,通过"钢筋放样"菜单统计材料用量,在 "大震分析"菜单下完成支墩设计、支座变形、压力等验算,输出隔震报告。

图 2 基于抗规的 DC 隔震设计菜单

DC 提出了一套"反应谱分析+随机模拟法校准+中震时程校核+大震弹塑性时程校核"的隔震设计整体解决方案,本文将 具体介绍如何通过 ETABS+DC 实现各个规范的隔震设计流程。

1. 抗规隔震设计

CiSDesignCenter

达结构设计软件

用户选择抗规时,DC将采用分部设计法完成隔震设计。根据抗规,DC将读取 ETABS 非隔震模型的构件内力完成构件 设计,自动生成 ETABS 隔震设防地震模型,用于验算减震系数,并生成 ETABS 隔震罕遇地震模型,用于验算支座和支墩。 设计流程如下所示。

CiSDesignCenter 筑信达结构设计软件

图 3 DC 抗规隔震设计流程图

1.1 确定隔震方案

DC 内置了标准化的隔震支座库,包括普通橡胶隔震支座和铅芯橡胶隔震支座,供用户选用,如图4所示。用户也可以自定义隔震支座。

+ nhr	7047	17 cm	a5 (7)	1. 0 9	##14m/→500	非线性		线性参数				非线性参数	
7.1 <u>P</u>	里 1空	序反	里里	万里	网切区型	-1F3,6111	抗压刚度	抗拉刚度	剪切刚度	阻尼	刚度	屈服强度	H H
			0	VI	无		135000	135000	0	0			
NR300	300	95	0	V2	200		0	0	690	0			
			0	V3	200		0	0	690	0			
			0	ชา	无		160000	160000	0	0			
RB300	300	95	0	V2	200		0	0	950	0	8970	16000	0.0774
			0	V3	200		0	0	950	0	8970	16000	0.0774
			0	vı	无		175000	175000	0	0			
LNR400 400	400	125	0	V2	200		0	0	890	0			
			0	V3	200		0	0	890	0			
			0	V1	无		200000	200000	0	0			
RB400	400	125	0	V2	200		0	0	1220	0	11630	27000	0.0774
			0	V3	200		0	0	1220	0	11630	27000	0.0774
			0	V1	无		205000	205000	0	0			
NR500	500	155	0	V2	200		0	0	1120	0			
			0	V 3	200		0	0	1120	0			
			0	V1	无		235000	235000	0	0			
RB500	500	155	0	V2	200		0	0	1520	0	14620	40000	0.0774
	支援 18300 18300 18400 18400	State B452 R5300 300 L1300 300 R400 400 L1400 400 R5500 500	首任 厚戌 R300 300 95 B300 300 95 B400 400 125 B400 600 125 B500 600 195	 注注 前代 第度の 第度の 第日 注注 前代 第日 	 第四 <li< td=""><td><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></td><td></td><td>住人 方名 うろ う うろ う うろ う う<td> </td><td><table-container></table-container></td><td><table-container> </table-container></td><td><table-container></table-container></td><td><table-container></table-container></td></td></li<>	<table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>		住人 方名 うろ う うろ う うろ う う <td> </td> <td><table-container></table-container></td> <td><table-container> </table-container></td> <td><table-container></table-container></td> <td><table-container></table-container></td>	 	<table-container></table-container>	<table-container> </table-container>	<table-container></table-container>	<table-container></table-container>

图4 隔震支座库

用户仅需准备好一个 ETABS 非隔震模型, DC 读取后, 在 DC 界面中点选需要布置支座的位置,将实时显示隔震支座的 面压、隔震层刚心、结构质心以及偏心率,这些数据可以协助用户确定支座布置方案。隔震支座布置方案确定后可导出 ETABS 隔震模型, 如图 5 所示。

图 5 导出隔震模型

1.2 选波

根据抗规,隔震设计的计算分析宜采用时程分析法,波的选取应符合规范 5.1.2 条的规定。选波是减隔震项目中耗时较长的一个步骤,为此,DC 中内置了波库(含天然波与人工波)和选波工具,可以人工选波,也可以根据原模型的地震设防烈度、场地类别、选波条件自动选出所需数量的组合波,并输出选波报告,判断是否满足选波条件,如图 6 所示。用户可以选择需要的组合波进行导出,DC 将自动在 ETABS 隔震模型中添加对应的地震波和时程工况。

·教授置 人士透波 日4//63 神奇中中落	(守人惧型		
地震 波未深		E4005809(1+	
● 地震波库 Tg=0.50s ∨	○ 用户导入	☑ 每条地震波基底剪力与CQC基底剪力	力比值 ◎ 満足 0.65 < 6 ≤ 1.35
天然地震波		✓ 地震波基底剪力平均值与CQC基底剪	関力比値γ満足 0.8 ≪γ≪1.2
urkey-901.−1986 urkey-901.7–1986	The Act Active and Act	 ▲ 想要支援合在下列周期平均反应语 「南臣 自定义周期 模态防設 1-3 構态原則 0.419,0.387,0.3 	\$
	Chi-Chi Taiwan-06-TCU02 Long Pristg-IM9D90-1989		
c Borthar dge=01-ARAGOP-1094 Chi = Chi : Tai vara = 7C1009-F-1 Japam = 7S1005-2000 Chi = Chi : Tai vara = 7C10078-Chi Chi = Chi : Tai vara = 7C10078-Chi Chi = Chi : Tai vara = 7C10078-F-1 Chi = Chi : Tai vara = 7C10078-F-1 Chi = Chi : Tai vara = 7C10078-F-1 Chi = Chi : Tai vara = 7C10078-F-1 Chi = Chi : Tai vara = 7C10078-F-1 Chi = Chi : Tai vara = 7C10078-F-1		(佈达地震波组首(付旨要水地震波组首数100)	
	天然波教量 2 > 人工波教量 1 >	Kobe Jypar 101709-1995 Jypar 20001-2005 AR1013_1506_5 Kobe A AR1013_1506_5	
人工地震波 生成人工波		自动选择地震波	第69月前 第9月前 第10月前 第11月前台
All1013_1508_5 All1013_1508_4 All1013_1508_5 All1013_1508_5	->>> ARL013_1506_3 AR1013_1506_4 ARL013_1506_5	查看述波报告	第131日会 第14日会 第151日会 第151日会 第151日会 第151日会 第151日会
			第19组合 第20组合 V 清空组合
选地震波3个			
l号 名称	说明		^
Chi-Chi Taivan-02-1	CVC06-N-1999		關係选
J sp an=SM9013=2005			删除全
AR1013_1506_5			~

1. 单条地震波基底剪力统计结果

序号。	名称	Χ 向剪力(比值)⊙	¥向剪力(比值)∂	是否满足
447	规范谱=-	427.51+1	429.068±1	63
10	Japan-HKD094-2006+2	530.154(1.24)+	534, 468 (1, 246) + ²	尨↩
2^{\wp}	Morgan Hill-AGW240-1984-	595.092(1.392)⇔	593. 124 (1. 382) ↔	合产
30	Japan-NIG022-2011cl	752.663(1.761) ⁽²	760. 120 (1. 771) -2	香户
40	Japan-HED098-2004cl	612.113(1.432)	618. 725 (1. 442) el	否可
5%	Japan-A0M020-2003+1	575.034(1.345)	574. 132 (1. 338) e ²	是:
80	Hector Mine=11684360= 1999=:	628.316 (1.47) e ³	623.987 (1.454) e ³	合中
740	Japan-HKD169-2003+J	597.650(1.398)	$601,620(1,402){\rm e}^{\rm j}$	否
80	Japan=A0M020=2008+3	512.796(1.199)	511.980(1.193)+ ¹	是可
940	Chi-Chi Tsiwsn-02- TAP094-E-1999-	594. 505 (1. 391) e ³	597. 698 (1. 393) e ¹	否e
10+2	Chi-Chi Taiwan-04- TCU112-E-1990-1	768.904 (1.799) ↔	772.861(1.801)+	香鱼

•2. 地震波组合平均剪力统计结果。

组合号。	地震波名称中	X 向剪力 (比伯)	误差(%)≓	¥ 向剪力 (比值)	误差(%)。	
442	規范達中	427.510⊖	e	429. 088⊖	-	
	Japan-A0M021-2005⇔					
167	Egypt-SVT-1995+2	429.746	0.32%+1	432. 514↔ (1. 008)↔	0.80%	
	AR0410_1725_5	(11000)				
	Japan-A0M021-2005+2			434.840*	1.34%*	
242	Egypt-SVT-1995e3	432.8074	1.24%*			
	AR0410_1725_3d	(1.012)		(1.010) -		
	Japan=A0M021=2005+1					
342	Egypt-SVT-1995+3	444, 8794	4.06%e1	447.0954	4.20%	
	AR0410_1725_2+1	(1.041)		(1. 042)**		

图 6 DC 选波工具界面及选波报告示意

1.3 上部结构设计

抗规采用的分部设计法,以水平向减震系数作为界限,隔震后上部 结构的水平向地震作用和抗震措施可适当降低。DC 自动根据时程结果 和反应谱结果计算减震系数,读取 ETABS 非隔震模型"小震"下的构 件内力,完成上部结构设计与出图,并统计工程量(图7)。

1.4 隔震报告

隔震层采用大震模型进行验算。

输出隔震报告前,用户需在图 8 中设置隔震支座参数,包括隔震支 座的直径 D、橡胶层总厚度 Tr 和建筑抗震设防类别,这些将影响支座验 算。

	隔震支座參数							
	隔震支座名称	直径 J(nn)	橡胶层总厚 度Tr(mm)	重力荷载代表值 下压应力限值 (ME+a)	罕遇地震下 压应力限値 (NPa)	罕遇地震下 拉应力限値 (MPa)	位移限 值 nn	^
	LNR400	400	300	12.00	25.00	1.00	220	
•	LRB400	400	300	12.00	25.00	1.00	220	
	LRB500	500	300	12.00	25.00	1.00	275	
	LRB600	600	300	12.00	25.00	1.00	330	
	LRB400_1	400	300	12.00	25.00	1.00	220	
	LRB400_2	400	300	12.00	25.00	1.00	220	
	LRB400_3	400	300	12.00	25.00	1.00	220	
	LRB500_1	500	300	12.00	25.00	1.00	275	
	LRB500_2	500	300	12.00	25.00	1.00	275	
	LRB500_3	500	300	12.00	25.00	1.00	275	
	LRB500_4	500	300	12.00	25.00	1.00	275	
拚	建铬本利指定限值			1		1	1	v
	田本建筑	±10 m	13276			确定	取消	
			~					

图 8 三向地震作用

塔号≈	楼层≓	构件↩	钢筋类型。	重量(kg)~
		柱↩	HRB400+2	10790. 7043
		50 . · ·	HRB400↔3	43024. 6343
T1¢3	STORY2e3	朱~	HPB300+2	9851.370
		1.11.1	HRB400+2	53815. 3243
		Willes.	HPB300+2	9851.370
		10.0	HPB300€ ³	16177. 36 ⁽²⁾
		項や	HRB400+3	9407. 94 ⁽²⁾
F1.1		50 . I	HRB400+ [□]	2930. 58¢ ³
110-	SIORI3+-	朱**	HPB300€ ²	588. 14 ⁽²⁾
		4.21.2	HPB300+3	16765. 51⊖
		小社会	HRB400+3	12338. 5143

图 7 工程量统计示意

DC 将根据抗规 12.2.6,验算大震下隔震支座的水平位移,位移限值取 min(0.55D, 3Tr)。根据抗规 12.2.4,需要验算罕遇 地震的水平和竖向地震同时作用下的隔震支座应力,考虑到非线性工况结果无法与其他工况结果叠加的问题,DC 可以定义三 向罕遇地震作用,如图 9 所示,直接读取该工况下的轴力完成支座应力验算。由于抗规中未明确支墩的设计方法,DC 将根据 新隔标附录 C 完成支座支墩的设计。最后,输出如图 10 所示的隔震报告。

			VALEPROF	testments of	PR. AR. TH	·														
导航	~ X					-		-		_		表3-23	福地震下幕	建支索	财疲力					
オンキシントの志	0		۲		۲	٢	0		¢	۲		隔震支	支座	细合。	支座	支座	釉力↔ N ²	支座	i应力~ Pa ^{_2}	拉应力
(LXII)+SER	"									4		唐名称 《	编号。	sam.	1ESem2	۲Ó	Yin	XQL	Y¢i≓	MPa-
标题 页面 结果		表 3-1 3	建地震下	語支座	馱協力								103	包络中	2. 83¢3	-167. 49 ⁽³⁾	-18.57¢3	-0. 592 ^{e3}	-0.066 ⁽⁻⁾	
		隔震支	支座	1000	趚	支産	油力・	支座	動力	压应力	-		10+3	包络中	2. 83¢3	-868.71¢	-856. 73 ²	-3. 072 ⁽³	-3. 030¢3	1
▲ 罕遇隔费计算书		座名称	编号	祖旨	1E5mm2	X向	्वि.४	X向P	u Y¢je	MPa [,]			11 ^{,1}	包络母	2. 83¢3	-868.71¢3	-858. 54e ³	-3. 072e ³	-3. 03643	1
1.隔震支座编号及布置图			143	包络中	2. 83¢ ²	-770.17	-900. 06+2	-2.724	-3. 183e ³				12 ⁴³	包络中	2. 83¢3	-604. 43¢3	-223. 50H ³	-2.138¢3	-0.790 ⁽²	1
2.重力何载代表值下文座压应力 2.空源始表作用工程要素表成为20倍			10+3	包络中	2. 83 ^{µ3}	-1175.37+	-1185.64+3	-4.157¢3	-4. 193 ⁴³				13 ⁽³	包络⇔	2. 83¢3	-604. 420	-215. 1743	-2.138¢3	-0.761¢3	1
5. 学通地展作用下隔层支船处力按具 A 空课地展作用下隔层支船水平均能			11+3	包络中	2. 83¢ ²	-1175.35+	-1187.464	-4 . 157↔ ³	-4. 200 ^{,2}				14 ^{,3}	包络中	2. 83¢3	-868. 7243	-856. 73+ ³	-3. 072#3	-3. 030+ ³	1
5.楼屋前力对比			12 ⁴³	包络中	2. 83¢3	-803. 6243	-1192.73	-2. 842±3	-4. 218¢3	1			150	包络日	2. 83¢3	-868.72	-858. 54 ^{,2}	-3. 072¢3	-3. 036(³	
6 层间位移角			1343	包络中	2. 83¢ ²	-803. 6143	-1184.35	-2. 842+ ³	-4. 189 ^[2]				16 ^{,3}	包络中	2. 83+3	-604. 42¢3	-223. 51+ ³	-2.138¢3	-0.790 ⁴³	1
7 顶点加速度/位移时程曲线			1443	包络中	2. 83¢3	-1175.41	-1185. 64	-4.15703	-4. 193¢3	1		LRB600+3	170	包络中	2. 83¢ ²	-589. 35¢ ³	-209. 21+2	-2.084 ^j	-0.740+3	1.0
8 基底剪力时程曲线			1543	包络中	2. 83¢ ³	-1175.41+	-1187.464	-4.157¢3	-4. 200 ^{µ3}				1803	包络中	2. 83¢3	-853. 05¢3	-849. 92¢3	-3. 017¢3	-3.006(3	1
9 累计能量分量图		LRB600+3	16+3	包络中	2. 83e ³	-803. 61¢3	-1192.72	-2.842 ^{±3}	-4.218¢3	-25.043	2		19 ^{,3}	包络中	2. 83¢3	-853. 04 ⁽²⁾	-851. 4 843	-3.017¢ ³	-3.011¢3	
			1743	包络中	2. 83 ^{µ3}	-804. 9543	-1176.734	-2. 847¢3	-4. 162¢3				263	包络日	2. 83¢3	-314. 79¢3	-314. 79+3	-1.113¢3	-1.113¢3	1
			18 ⁴³	包络中	2. 83e ³	-1174. 19	-1175. 550	-4. 153e ³	-4.158¢3	1			20+ ³	包络中	2. 83¢3	-589. 37¢3	-217. 31¢3	-2.084 ⁽²⁾	-0.76943	
			19+3	包络中	2. 83#3	-1174. 19+	-1177.0943	-4. 153 ⁴³	-4. 163 ⁴³				21¢3	包络日	2. 83 ^{e3}	-155. 96¢3	-18. 65 ⁽³	-0. 552×3	-0.06643	
			213	包络日	2. 83 ^{j,3}	-975.71¢3	-975.71¢3	-3. 451¢ ³	-3. 451¢ ³				22¢3	包络中	2. 83¢3	-302.79+3	-302. 79+ ³	-1.071¢3	-1.071e ³	
			20+3	包络中	2. 83#3	-804. 9643	-1184.86	-2. 847¢3	-4. 191¢3				23 ⁽³	包络日	2. 83e ³	-302.7943	-302.79¢3	-1.071¢3	-1.071e ³	
			21+3	包络中	2. 83 ^{j2}	-758. 6243	-900, 08+3	-2. 683 ^{,1}	-3. 183¢3				24+3	包络中	2. 83¢3	-155. 96¢3	-26. 13 ⁴³	-0. 552#3	-0.092+3	
											-									

2. 新隔标隔震设计

用户选择新隔标时, DC 将采用整体分析设计法来完成隔震设计。根据新隔标, DC 将生成等效线性化的 ETABS 隔震设防地震模型,完成反应谱分析;生成 ETABS 非线性隔震设防地震模型,进行反应谱层间剪力校准/校核;依据校准/校核后的反应谱内力进行构件设计和施工图绘制,生成 ETABS 隔震罕遇地震模型,完成支座验算和支墩设计。设计流程如图 11 所示。

2.1 隔震设防地震模型

与 1.1 节提到的一致, DC 读取 ETABS 非隔震模型后,用户可以在 DC 中完成隔震支座的布置。与抗规相比,新隔标考虑到隔震结构的变形和破坏形态与一般抗震的长周期建筑结构有较大区别,对反应谱曲线做了调整,DC 将在 ETABS 中定义相应的反应谱曲线。新隔标要求按设防烈度对隔震结构进行整体分析和设计,因此 DC 将生成一个 ETABS 隔震设防地震模型。

2.2 等效线性模型

根据新隔标,采用反应谱法时,应将上部结构、下部结构和隔震层进行整体分析,其中隔震层的非线性可按等效线性化的迭代方式考虑。DC采用双线性力学模型模拟隔震支座(图 12),根据其滞回模型确定隔震支座的等效刚度和等效粘滞阻尼:

$$k_e = F/u_0; \qquad \qquad C_e = \frac{E_D}{\pi \omega u_0^2}$$

其中: $E_D = 4(u_0 - u_{dy})(1 - \alpha)F_{dy}$; ω 为结构圆频率, $\omega = \frac{2\pi}{r}$ 。

DC 按中震进行反应谱分析,经过多次迭代,当连接单元的变形和结构基本周期均收敛时(默认收敛容差为0.005),迭代 结束,得到最终的等效线性模型。用户可以查看和保存支座迭代过程(图13),也可以查看等效线性模型中每个连接单元的有 效刚度和有效阻尼(图14)。

2.3 剪力调整

图 15 随机模拟法

ETABS 中没有复模态反应谱法(CCQC), DC 中默认采用实模态反应谱法得到用于承载力验算的构件内力。但是考虑到 反应谱法本身存在一定的局限性,比如不同的等效方法得到的等效线性模型差异较大、反应谱理论本身假定的峰值因子一致 性假定带来的误差、反应谱法的推导过程采用的小阻尼比假定产生的影响等等,因此,DC 中提供了更精确的求解方案,可选 择用随机模拟法或补充时程分析调整反应谱法的楼层剪力。

2.3.1 随机模拟法

随机模拟法^[4]通过生成大量的人工波来进行随机模拟,避免了反应谱理论的"峰值因子一致性"假定,可以得到更为真实的结构响应,并采用时程分析,避免了等效线性的误差。如图 15 所示,随机模拟法的基本流程为:

(1) DC 生成与设防烈度地震影响系数曲线等价的不少于 500 条的人工模拟地震波,并输出人工波频谱特性对比结果,用户可将生成的人工波保存,用于其他模型的计算;

(2) 基于生成的人工波,选择用"FNA 法"或"时域显式法"完成非线性隔震模型的时程分析。采用时域显式法时, DC 先将模型换回非线性隔震模型,提取时域系数矩阵,得到时程计算结果;采用 FNA 法时,DC 将生成的 500 条人工波分 批导入非线性隔震模型,将每批的计算结果依次存在 DC 中,大大降低了对计算机读取能力的要求。当模型中有较多的非线 性隔震支座时,建议用户选择 FNA 法,可以得到更高的计算效率。从图 16 可以看见,FNA 法和时域显式法计算结果吻合得 很好,误差不超过 1%。

(3) DC 以时程分析结果为基准,对比等效线性隔震模型的层间剪力,得到层间剪力校准系数。时程分析的结果有可能 小于反应谱分析结果,此时层间剪力校准系数将小于1,但用户可以控制校准系数≥1,即时程分析结果与反应谱分析结果取 较大值。

通过随机模拟法可以精确得到各层的层间剪力校准系数,它反映了隔震后结构各个楼层的层间剪力变化情况。根据规范, 调整后的层剪力还需满足剪重比要求, DC 将取剪力校准和剪重比调整的包络值。

(a) 500 条人工波平均反应谱与规范反应谱的匹配

图 16 时程校准结果

2.3.2 补充时程分析

DC 中内置了选波功能,如1.2 节所述,可协助用户完成地震波的选取,自动定义时程工况。DC 将根据时程结果对等效 线性模型的反应谱结果进行调整,取时程与反应谱的包络值,输出时程包络系数。

2.4 构件设计和出图

根据新隔标,构件采用中震设计,DC 将读取等效线性化的隔震设防地震模型的构件内力,基于用户设置的设计参数完成 荷载组合和构件设计。

用户可以在总信息设置(图 17)中设置结构重要性系数、构件抗震等级等设计参数,该参数对所有构件起作用。还可以 在楼层设置(图 18)中查看或修改剪力调整系数,默认取随机模拟校准系数和时程包络系数的包络值,也可以人为控制。

桃居之私

Storv

Storyl

间隔(m) 标高(m)

14.4

3.6

地震力调整系数计算: 🗹 时程校准系数 🔽 时程包络系数 🗔 人工设置

|整系数→Max(层剪力校准系数,时程包络系数)

结构总信息	- 🗆 ×
一般信息「调整信息」配筋信息」设计信息	
结构重要性系数 1.00 ◆ 钢构件净毛截而比 1.00 ◆ 群型体系 开始路框型 >	边缘构件信息 剪力墙边缘构件类型 〇 規范指定的四种类型 ④ 规范指定的四种类型+(转角墙+柱)
 福奈抗震等级 二級 ダ 対応武策等级 二級 ✓ 	- 构造边缘构件尺寸 ○ 按《砼规》11.7.19条处理
活载分项系数 重力荷载代表值中活荷载组合系数 0.50 €	 ● 按《高规》7.2.16条处理 ○ 按《抗规》6.4.5条处理
活荷载的准永久值系数(用于计算挠度、裂缝) 0.50	

图 17 总信息设置

图 18 楼层设置

加强层

X向地震力调整系数

Y向地震力调整系数

确定 取消

DC 自动将构件分为了关键构件、重要构件和普通构件,可以通过设计覆盖项调整局部构件的抗震构造等级和构件类型。 需要注意的是,DC 并不会根据隔震结构底部剪力比自动调整抗震措施,如需调整,用户可通过设计覆盖项进行设置。不同类 型构件的承载力验算公式如下表。

构件类	型	验算公式	规范条文
子碑构件	正截面	$x S + x S + x S \leq P/x$	4461
大斑狗什	斜截面	$\int_{G} G_{EE} + \int_{Eh} G_{Ehk} + \int_{Ev} G_{Evk} \ge K + \int_{RE}$	4.4.0-1
並通限自构供	正载面	$S_{GE} + S_{Ehk} + 0.4 S_{Evk} \le R_k$	4.4.6-2
百进立问何什		$S_{GE} + 0.4S_{Ehk} + S_{Evk} \le R_k$	4.4.6-3
里安小十何日	斜截面	$\gamma_G S_{GE} + \gamma_{Eh} S_{Ehk} + \gamma_{Ev} S_{Evk} \leq R / \gamma_{RE}$	4.4.6-1
並通水亚构建	正截面	$S_{GE} + S_{Ehk} + 0.4S_{Evk} \le R_k^*$	4.4.6-4 (考虑超强系数)
百进小十円什	斜截面	$S_{GE} + S_{Ehk} + 0.4S_{Evk} \le R_k$	4.4.6-2

表1 新隔标构件承载力验算公式

用户可以查看任一构件任一荷载组合下的设计细节,并让 DC 完成施 工图的绘制,基于钢筋放样统计工程量。

2.5 大震弹塑性分析

根据规范,需要验算罕遇地震作用下支座的最大变形与支座的最大/最小面压,并完成支墩设计。DC内置了选波功能,如1.2节所述,可协助用 户完成地震波的选取,并生成相应的时程工况。接着,DC读取隔震设防地 震模型的施工图配筋结果,自动生成大震弹塑性模型,模型默认设置为:梁 与连梁两端布置 M3 铰、柱两端布置 P-M2-M3 纤维铰、墙布置默认墙铰(P-M3 纤维铰)、支撑跨中布置轴力铰等,如图 19 所示。

DC 将基于该模型完成时程分析,提取支墩内力,根据新隔标附录 C 完 成支墩设计。

函数

14

2.6 隔震报告

上述计算完成后,基于用户设置的支座参数,DC 自动统计隔震设防地震模型下的楼层力、层间位移角、剪重比、支座长期面压、偏心率、抗倾覆验算和抗风验算结果,统计大震弹塑性模型的楼层力、层间位移角、顶点位移、底部剪力、支座变形、支座面压及支墩验算结果,输出隔震报告。

3. 广东高规隔震设计

用户选择广东高规时, DC 将采用整体分析设计法来完成隔震设计。广东高规规定用等效线性化的隔震设防地震模型做性 能化设计,用非线性隔震设防地震模型校核反应谱层间剪力,用大震模型验算支座和支墩。设计流程与新隔标基本一致,如 图 20 所示。

图 20 DC 广东高规隔震设计流程图

3.1 隔震模型

与前文所述一致,用户可以在 DC 中布置隔震支座,生成隔震模型。根据广东高规,应进行结构性能化设计,且广东高规中反应谱曲线与国标有一定的差异,因此 DC 将自定义反应谱曲线,生成隔震模型。

3.2 等效线性模型

与 2.2 节所提到的迭代方式一致, DC 将分别对隔震设防地震模型和罕遇地震模型进行迭代计算, 得到等效线性模型, 其中, 罕遇地震模型用于支墩设计。

3.3 剪力调整

与 2.3 节所提到的一致, DC 提供了随机模拟法校准和时程补充校核两种方式, 用户可选择所需的方式对等效线性设防地 震模型进行层剪力调整。

3.4 性能化设计与出图

根据广东高规,隔震结构的抗震性能目标如图 21 所示。

性能目标 地震水准 性能水准	A	В	с	D
设防烈度地震	1	1	2	3
预估的罕遇地震	1	2	3	4

图 21 隔震结构的抗震性能目标

DC 将根据用户选择的性能目标(图 22),基于等效线性模型,完成设防烈度地震下构件的性能化设计:

$S_k = S_{GEk} + \eta c (S_{Ehk}^* + 0.4 S_{Evk}^*) \le \xi R_k$

式中 c 为地震力折减系数,一般取 1; ξ为承载力利用系数,η为构件重要性系数,关键构件默认取 1.1,一般竖向构件取 1.0,水平耗能构件默认取 0.6,用户也可以通过覆盖项灵活调整(图 23)。

图 22 设计首选项

图 23 设计覆盖项

用户可以查看任一荷载组合下任一构件的设计细节,并输出施工图。

3.5 大震分析

根据广东高规 14.2.13, 支墩应按性能水准 2 进行承载力验算:

 $S_k = S_{GEk} + \eta c (S_{Ehk}^* + 0.4 S_{Evk}^*) \le \xi R_k$

式中c取1,承载力利用系数ξ,压、剪取0.83;弯、拉取1。

用户选择生成大震弹性模型或大震弹塑性模型, DC 直接读取大震模型 结果,基于用户设置的支座参数,通过 PMM 曲面完成支墩校核(图 24)、 验算支座变形和支座应力,最后输出隔震报告。

图 24 支墩校核

4. 结束语

ETABS 具有强大的非线性分析功能,在减隔震设计领域应用广泛,但使用 ETABS 时,用户需要根据规范要求分别建立 中震模型和大震模型,分别提取构件设计、支墩设计和支座校核等结果,操作比较繁琐,且对于不熟悉 ETABS 的工程师,常 常遇到参数设置错误、计算结果不知道如何查看、分析结果异常等问题。DC 隔震设计软件,内置了标准化的隔震支座数据库, 接力 ETABS 生成隔震模型,根据规范实现了分部设计法和整体分析设计法。对于整体分析设计法,自动迭代得到等效线性模 型,通过随机模拟法校准层剪力,通过时程分析进行层剪力校核,避免了反应谱理论的缺陷和等效线性的误差,一键完成大 震弹塑性分析、隔震层的验算,并输出隔震结构计算书,协助工程师准确、高效地完成隔震设计。

更详尽的技术要点介绍可参见另一篇文章"筑信达 DC 隔震设计软件的隔震解决方案"。

参考资料

- [1] GB/T 51408-2021 建筑隔震设计标准[S]. 北京:中国计划出版社, 2021.
- [2] GB50011-2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010.
- [3] DBJ/T 15-92-2021 高层建筑混凝土结构技术规程[S]. 北京:中国建筑工业出版社, 2021.
- [4] 苏成, 黄志坚, 刘小璐. 高层建筑地震作用计算的时域显式随机模拟法[J]. 建筑结构学报, 2015, 36(01).

SAP2000 中目标位移法的找形分析功能

筑信达 吕良

张力结构为柔性结构体系,在满足一定拓扑关系的几何构造和外形下通过预应力来获取刚度,从而使结构具有承载力。 但是,并不是任何一种预应力分布都能保证张拉结构成为稳定的结构,只有在预应力作用达到平衡、使结构的整体刚度达到 一定水平时结构才是稳定的。因此张力结构要在承受外荷载前成为稳定的结构,就必须在结构中施加合适的预应力,使结构 达到能满足设计要求的初始形态。

获得初始态的过程称为"找形分析"(form-finding)。由于初始态涉及预应力和几何位形,所以广义的找形分析也可以分为两种:一种是从确定的几何位形出发,寻找能够满足这一位形的预应力分布,又称找力分析(force-finding),一般素穹顶结构、车辐式张拉结构是属于这类问题,如图 1-a 和图 1-b 所示。另一种是给定拉索想要达到的预应力值,以及结构的边界点坐标,计算结构内部节点的位形坐标,又称找形分析(这是"狭义"的 form-finding,即寻找结构的形状,有的文献也称之为 shape-finding),单层索网结构、膜结构是这种情况,如图 1-c 和图 1-d 所示。

图1 常见的索结构

不同类型的张力结构,可采用不同的分析方法找形,常规的找形方法有:力密度法、动力松弛法等。实际工作采用这些 方法对结构进行找形分析时,一方面对设计人员的基础理论要求较高,操作起来也比较繁琐,给设计人员造成很多障碍。 SAP2000 中嵌入了目标位移法的找形分析方法,该方法具有概念清晰,且易于操作的特点,可简化整个找形分析的工作。目 标位移法是已知结构在外荷载作用下的最终形态,来精确求解其初始形态的一种结构成形分析方法,适用于第一类找形问题, 即找力分析 (force-finding)。本文将介绍 SAP2000 中目标位移法的基本原理及操作流程,并通过两个不同类型的案例来演示 目标位移法找形分析方法的应用。

1. 基本原理介绍

1.1 目标位移法基本原理

目标位移法的基本原理为: 首先给定结构满足使用功能要求的最终形态(此时结构控制点位于目标位置), 图 2-a; 然后施加结构自重和稳定索力,相当于外荷载给索一定刚度,进行结构非线性分析求得结构控制点位移 d1,达到一个新的结构平衡

状态,图 2-b; 然后利用结构控制点的位移值 d1,反方向调整结构形态(基于图 2-a),调整后如图 2-c; 施加结构自重和稳定 索预应力后再次进行结构非线性分析,获得结构另一个新的平衡状态,图 2-d,并得到结构控制点位移为 d2; 根据前两轮结 构控制点位移差 Δ d=d2-d1,反方向调整结构形态(基于图 2-c),图 2-e,施加结构自重和稳定索预应力后继续进行结构非线 性分析。按照这个过程重复进行,直至在结构自重和稳定索力作用下到达平衡状态,并使结构控制点精确位于图 2-a 所示位 置为止。

图 2 目标位置法计算示意图

1.2 SAP2000 中的目标位移法

基于上述原理, SAP2000 中嵌入了目标位移法。在分析完成后,通过命令:分析>修改未变形几何,可以打开下图对话框, 其中【几何修改选项】中的"目标位移法-节点坐标减去节点位移"即为目标位移法。

几何修改选项			
目标位移法 - 节点坐标藏去节点位移			
荷载工况	DEAD		~
缩放系数		1	
○ 模态缩放法 - 基于模态形状修改未变形几何 注: 天可用的模态或屈曲工况			
荷载工况			
振型			
最大位移值		1	
最大位移值 【恢复】原始的未变形几何		1	
最大位移值 〇 【恢复】原始的未变形几何 方向和位置		1	

图 3 SAP2000 中目标位移法

该选项中的【荷载工况】为施加找形时需考虑的荷载工况。如上图中,在找形时仅需要考虑结构的自重,因此荷载工况

设置为"DEAD"。在该工况中,程序会计算各个控制节点的位移,通过当前工况的节点坐标,节点的原始坐标,放大系数,即可求出下次迭代时节点的新坐标,计算方法为:节点的新坐标=当前工况的节点坐标+放大系数×(原始坐标-(当前工况的节点坐标+当前工况下的节点位移),相应的计算公式为:

$$\begin{cases} x_n = x_c + sf \times [x_o - (x_c + dx)] \\ y_n = y_c + sf \times [y_o - (y_c + dy)] \\ z_n = z_c + sf \times [z_o - (z_c + dz)] \end{cases}$$

其中: 放大系数*sf*,用于控制新节点坐标偏移当前工况节点坐标的程度,程序默认值 1。放大系数取 1 时,以 z 坐标为例,此时公式即可退化为: *z_n* = *z_o* - *dz*,与图 2-e 中的坐标表达式基本相同。

计算出各个控制点的新的坐标位置后,在【方向和位置】选项卡中,用户可以选择是否修改所有节点的坐标,还是仅修 改部分节点。另外用户也可以仅修改控制节点的某个方向的坐标,一般建议保持默认全选。

通过修改未变形几何调整节点初始坐标后,然后再次运行分析工况。分析完成后程序会输出节点的目标坐标、实际坐标 和百分比差异(%差异),如下图所示。其中"目标坐标"为节点的原始坐标,"实际坐标"为当前工况下节点变形后的坐标。 "%差异"表示上一步修改未变形几何时施加的节点坐标修改数值 di,与当前工况中的节点的位移 di+1 的差值百分比,即(di+1di)/di。通过查看"实际坐标"或"%差异",可以判断当前结果是否满足要求。当"节点实际坐标"和"目标坐标基本"相同 或"%差异"接近 0 时,即表示结构已达到目标状态,此时的预应力分布即为找到的力。

节点对象	87	节点单元 87	
	1	2	3
平动	24.49643	0.	-65.91203
转动	0.	0.0045	2.428E-04
和日本 Target Case	小级20144 : DEAD, SF = 1.		
	X	Υ	z
目标	-14722.43	8500.	6200.
实际	-14722.13	8499.826	6194.209
% 差异	1.44 %	1.44 %	9.63 %
◎ 差异	1.44 %	1.44 %	9.63 %

图 4 节点位移输出

SAP2000 中目标位移法的整个计算过程可通过下侧流程图来表示:

S Joint Displacements

图 5 目标位移法流程图

2. 功能说明算例

现在通过图 6 中的索撑杆模型^[2]来介绍在 SAP2000 中如何通过目标位移法对该结构进行找形分析。该模型是由 6 根索和 2 根撑杆组成,其中 7 号、8 号杆件为撑杆,其余构件均为相同截面的索。索截面半径为 3mm,弹性模量 E=1.8×10⁵MPa, 热膨胀系数 α=1.2×10⁻⁵;杆截面面积为 7.0686mm²,弹性模量 E=2.06×105MPa,热膨胀系数 α=1.2×10⁻⁵。索和撑杆的材料 密度均为 7850kg/m³。现在需要计算该结构在自重作用下,各段索需要施加多大的索力才能在设计位置处保持平衡。

2.1 模型建立

首先在SAP2000中建立上述模型。注意,建模时撑杆采用框架单元模拟,索采用索单元模拟。在定义索的初始几何信息 时,需要给索施加一个初始的张拉力,使索在绘制的时候就存在一定的张力。施加初始张力是为了保证索在开始计算阶段即 存在一定的刚度,如果开始计算时索刚度较小,会导致结构的在荷载作用的变形过大,容易出现不收敛的问题。为保证整个 结构在初始张力下的变形与目标位置的偏差不至于过大,可以将每个索的无应力索长设为索两端点之间距离的n倍(n<1)。

对于该模型可以通过"索-相对未变形长度"定义索单的几何信息,以5号索为例,其相对长度设置为0.9993。如图7所示,可以看到该索在绘制时,索对应 i 段的张力为4228.8067N。该索力可以理解为将长度为5154.0333*0.9993=5150.2952mm的索 拉长到了5154.0333mm,挂在了4号和6号节点之间,此时4号节点端索张力为4228.8067N,6号节点端索张力为4226.0848N。但 是通过这种方式施加的张力拉力并不是一个平衡索力,后续工况中该索的索力会根据结构的变形协调而改变,这里仅是为了 给索提供一个初始刚度。

图 7 索初始几何信息的指定

该模型需要找到在自重作用下该结构在建模位置处达到平衡的合适索力,因此在荷载工况中仅需要考虑自重。这里不用 对索施加额外的索力,索力会通过目标位移法迭代得到。由于索结构一般比较柔,变形较大,因此在分析时需要勾选 P-delta 和大位移效应,工况设置如图 8 所示。

工况名称		注释	
DEAD	默认名称	修改/显示	静力分析 ~ 设计
初始条件			分析类型
◉ 零初始条件 - 无应力状态			○ 线性
○ 接力非线性工况		\sim	● 非线性
【重要提示】: 当前工况继承有	过罢工况中施加的荷载.		
漠态工况			几何非线性
模态荷载		MODAL \sim	〇无
ə 加荷载			O P - Delta
荷载类型 荷载	名称 比例系	教	P - Delta 和大位移
Load Pattern V DEAD	~ 1.		质量源
Load Pattern DEAD	1.	添加	Previous 🗸
		修改	
		13 1/1	
		刪除	
	I		
其它参数			
加载控制	Full Load	修改/显示	确定
结果保存 Fin	al State Only	修改/显示	取消
		10-11-0-0	

图 8 工况设置

2.3 分析迭代

工况设置完成后,运行"DEAD"工况,此时可以得到结构在重力工况下各个节点的竖向位移。依据目标位移法,需要将 得到的竖向位移反号施加在节点的坐标上修改节点的坐标。SAP2000 中通过命令:分析>修改未变形几何,勾选目标位移法, 荷载工况设为"DEAD",缩放系数设为1。修改完成后再次进行计算,完成第一次迭代,以4号节点为例,可以看到其"%差 异"为0.5%,如图9-a所示。第一次迭代完成后,由于其误差较大,按上述方式进行第二次迭代,完成第二次迭代后可以看 到4号节点的"%差异"为0.0%,满足要求,迭代完成。

a 第一次迭代

图 94 号节点位移图

为便于解释程序的计算过程,将4号节点坐标和节点位移整理到表1中。其中节点的初始坐标为上一次迭代变形后的坐标,如表1中两块灰色的区域,两组数据是相等的。%差异 = (当前工况计算的位移 - 上一次迭代的位移)/上一次迭代的位移。如1中第一次的迭代后,z方向的%差异,0.5028%= (-1.11740+1.11181)/-1.11181。

阶段	坐标轴	初始节点坐标 单位(mm)	节点位移(mm)	变形后坐标(mm) 实际坐标	%差异
百长从七	x	2500	-0.12443	2500.12443	١
原始坐你	У	0.0	0.0	0.0	١
(日1小王1小)	Z	1250	-1.11181	1251.11181	١
	x	2500.12443	-0.12501	2499.99942	0.4653%
第一次迭代	У	0.0	0.0	0.0	0
	Z	1251.11181	-1.11740	1249.99441	0.5028%
	x	2499.99942	-0.12501	2499.87441	0
第二次迭代	У	0.0	0.0	0.0	0
	Z	1249.99441	-1.11747	1248.87694	0.0063%

表1 4号节点坐标及位移结果

完成第二次迭代后,该索杆结构的轴力分布如图 10 所示。将该索力提取出来,与论文^[2]中的轴力值进行比较,如表 2 所示。可以看到,两者最大差异不超过 0.05%,如果忽略有效数字的差异,SAP2000 在考虑该结构自重的条件下计算的索力与论文^[2]数值几乎完全吻合。

图 10 索轴力分布

< 📫 GLOBAL

∨ N, mm, C

表 2 杆件轴力比较

杆	件编号	1	2	3	4	5	6	7	8
	论文数值	4.082	4.179	3.961	4.054	4.082	4.179	-1.002	-1.002
和刀(NN)	SAP2000 数值	4.08256	4.1793	3.95935	4.05326	4.08256	4.1793	-1.0022	-1.0022
差	值(KN)	-0.00056	-0.0003	0.00165	0.00074	-0.00056	-0.0003	0.0002	0.0002
百分比(%)		-0.01%	-0.01%	0.04%	0.02%	-0.01%	-0.01%	-0.02%	-0.02%

需要注意的是该索杆结构,当索力与撑杆轴力在各个节点位置处平衡时,结构即可达到平衡态。因此对于不同的初始索 张力,是可以找到不同的索力分布的。这里可以通过多次试算来求得所需的索力分布。

3. 算例 1: 穹顶结构

索穹顶结构一般是先设计出结构造型,再求解出实现这种造型所需要的预应力。以肋环型索穹顶为例,要实现其结构造型,各拉索、撑杆之间的预应力比例关系是唯一的。如下图所示,一旦构件的尺寸发生变化,如撑杆变长,建筑造型就不同了,构件之间的预应力比例关系也要发生相应的变化。反之,如果按照一定的尺寸比例关系加工索和撑杆,将他们按照相应的关系连接起来,将斜索和脊索连至固定端,结构就张拉成型了,并且成型后的预应力比例关系是不会变的。

如图 11-a 所示的 Geiger 型索穹顶结构,其跨度为 100m,设有三道环索。已知结构的几何参数,如图 11-b 所示。该结构 中钢材的密度均为 ρ=7850kg/m³,索的弹性模量 E=1.7x10¹¹Pa,撑杆的弹性模量 E=2.1x10¹¹Pa,结构各个杆件的截面面积如表 3 所示。在 SAP2000 中通过支座位移法求解该结构在自重作用下达平衡状态时的预应力分布。

a 结构布置

b 结构几何参数

图 11	穹顶结构
------	------

表3 穹顶结构构件尺寸图

北安武石	杆件号	1-背索	2-背索	3-背索	4-背索
月杀戦山	截面面积 (mm²)	3205	3205	3205	3205
撑杆截面	杆件号	5-撑杆	6 撑杆	7 撑杆	N
	截面面积(mm²)	25819	25819	25819	N N
纷纷声载西	杆件号	9-斜索	11-斜索	13-斜索	N
科拉家截囬	截面面积(mm²)	3391	3205	3205	N N
环索截面	杆件号	8-下环索	10-中环索	12-上环索	N
	截面面积 (mm²)	7996	4205	3205	

在 SAP2000 中通过轴网功能快速建立该穹顶结构的模型,该结构外压环梁刚度较大,本模型中并没有建立外压环梁而是 将其简化为固定铰接支座处理,如图 12-a 所示。通过多次迭代后,提取该穹顶单榀结构索杆的轴力分布如图 12-b 所示。将该 索力整理到 Excel,与论文^[3]中的轴力值进行比较,如表 4 所示。可以看到,两者最大差异不超过 1.0%, SAP2000 在考虑该 结构自重的条件下计算的索力于论文数值基本吻合。

a SAP2000 中的穹顶模型

b 单榀结构轴力图

分类	构件来到	构体来到 构体论只	位置		j 位置		中间位置	论文数值	差值	百分比
万英	构计关空	构十编号	距离(m)	轴力(KN)	距离(m)	轴力(KN)	轴力(KN)	轴力(KN)	轴力(KN)	%
	1-背索	3	0	1944.78	16.87	1945.68	1945.23	1951.3	-6.07	-0.31%
北击	2-背索	4	0	995.79	16.71	996.44	996.11	1001.3	-5.19	-0.52%
月系	3-背索	5	0	501.91	16.57	502.24	502.07	506.1	-4.03	-0.80%
	4-背索	197	0	966.92	0.26	966.92	966.92	974.8	-7.88	-0.81%
	5-撑杆	7	0	-473.05	9.00	-454.80	-463.92	-464.3	0.38	-0.08%
撑杆	6-撑杆	10	0	-183.85	6.00	-171.69	-177.77	-178.1	0.33	-0.19%
	7-撑杆	11	0	-47.66	3.00	-41.58	-44.62	-44.8	0.18	-0.40%
										-5

表 4 穹顶结构杆件轴力比较

图 12 SAP2000 穹顶结构模型

	9-斜索	2	0	1563.91	17.35	1562.47	1563.19	1562.8	0.39	0.03%
斜索	11-斜索	8	0	936.23	16.86	935.38	935.80	936.6	-0.80	-0.09%
	13-斜索	9	0	486.23	16.61	485.81	486.02	487.1	-1.08	-0.22%
	8-下环索	194	0	2870.06	17.34	2870.06	2870.06	2869.4	0.66	0.02%
环索	10-中环索	195	0	1770.63	8.80	1770.63	1770.63	1772.1	-1.47	-0.08%
	12-上环索	196	0	933.96	0.26	933.96	933.96	936.1	-2.14	-0.23%

4. 算例 2: 环形张力索结构

环形张力索结构由车辐式悬索结构的受力机理演化而来,其构成特点是:结构中部设有大开孔的中心环状结构,外侧有 一个刚度较大的受压外环,通过沿径向布置的拉索或索桁架连到中心受拉内环;拉索或索桁架的张拉力与外环的压力平衡, 整个结构属于自平衡受力体系。此类结构同样可以通过目标位移法来计算结构的初始预应力分布。

如图 13-a 所示的为环形张力索桁结构,已知该结构的几何拓扑关系,结构外圈半径为 100m,内圈半径为 70m。整个结构分为对称的 24 榀,结构切面视图如 13-b 所示,其内侧设有两类撑杆,其中长撑杆长度为 20m,短撑杆长度为 14m。该结构中钢材的密度均为 ρ=7850kg/m³,索的弹性模量 E=1.7x10¹¹Pa,撑杆的弹性模量 E=2.1x10¹¹Pa,结构各个杆件的截面面积如 表 4 所示。在 SAP2000 中通过支座位移法求解该结构在自重作用下达平衡状态时的预应力分布。

a 结构布置

b 结构几何参数

图 13 环形张力索结构

表 5 环形张力结构杆件尺	[Σ	ŗ
---------------	----	---

南载西	杆件	上环索	下环索	上径索	下径索
杀戦回	截面面积 (mm²)	11877	20819	4247	7263
撑杆截面`	杆件	长撑杆	短撑杆	١	١
	截面面积(mm²)	25898	25898	١	١.

在 SAP2000 中建立该穹顶结构模型,如图 14-a 所示。该结构中外侧受压环梁刚度较大,本模型中并没有建立外侧受压环 梁,而是将其简化为铰接支座处理。通过多次迭代后,该环形张力结构单榀索杆的轴力分布如图 14-b 所示。将该索力整理到 Excel,与论文^[3]中的轴力值进行比较,如表 6 所示。可以看到,两者最大差异约为 1.5%, SAP2000 在考虑该结构自重的条件 下计算的索力与论文数值基本吻合。

a SAP2000 中的环形张力模型

b 单榀结构轴力图

I 位置 j 位置 中间位置 论文数值 差值 百分比 分类 构件类型 构件编号 距离(m) 轴力(KN) 距离(m) 轴力(KN) 轴力(KN) 轴力(KN) 轴力(KN) % 外 2059.109 16.557 2061.45 2060.28 2079.2 -18.92 -0.91% 83 0 上径索 1899.86 1900.34 1915 -14.66 -0.77% 内 84 15.333 1900.82 0 外 85 2413.281 16.553 2409.32 2411.30 2375.6 35.70 1.50% 0 下径索 2232.03 内 86 0 2233.798 15.284 2232.91 2201.8 31.11 1.41% 上环索 175 0 7148.065 18.276 7148.07 7148.07 7193.3 -45.24 -0.63% 环索 下环索 176 8375.353 8375.35 8375.35 8270.5 104.85 1.27% 0 18.270 长撑杆 81 -378.79 20.001 -419.45 -399.12 -396.5 -2.62 0.66% 0 撑杆 短撑杆 82 0 -522.531 14.002 -551.00 -536.76 -536.4 -0.36 0.07%

图 14 SAP2000 穹顶结构模型 表 6 环形张力结构杆件轴力统计

5. 总结

位形的确定是张力结构设计与分析中最基本也是最为关键的问题。SAP2000中的目标位移法适用于处理第一类找形问题: 已知结构的拓扑几何关系求解满足位形要求的索力分布。该方法具有概念明确,操作简单,计算速度快的特点。并通过合理 的参数控制,其计算结果可以达到很高的精度。该方法可以作为结构找形分析的一种有力的分析工具。

参考资料

[1] Computers & Structures Inc.,北京筑信达工程咨询有限公司.CSI 分析参考手册.2021.
[2]刘学武.大型复杂钢结构施工力学分析及应用研究[D].清华大学,2008.
[3]姜群峰.松弛索杆体系的形态分析和索杆张力结构的施工成形研究[D].浙江大学,2004.
[4]郭彦林、田广宇.索结构体系、设计原理与施工控制[J] 北京:科学出版社,2014

DOI:10. 19701/j. jzjg. 2021. 21. 013

钢筋混凝土柱的临界轴压比与轴压比限值

李楚舒, 李 立, 陈云波, 吴文博 (北京筑信达工程咨询有限公司,北京 100043)

[摘要] 从钢筋混凝土基本原理出发,重新推导了对称配筋矩形柱的临界轴压比公式,结果表明:临界轴压比设计 值应为 0.5 左右,取决于截面材料属性,而非 0.9;临界轴压比的设计值与标准值之比稍大于 1.0,而非荷载分项系 数与材料分项系数之乘积 1.63。通过 PM 相关曲线的简单数值算例对推导结果进行了验证,并采用约束混凝土本 构模型对规范轴压比限值进行了相关讨论。

[关键词] 钢筋混凝土柱;临界轴压比;轴压比限值; PM 相关曲线;约束混凝土本构模型

中图分类号:TU375 文献标识码:A 文章编号:1002-848X(2021)21-0064-04

[引用本文] 李楚舒,李立,陈云波,等.钢筋混凝土柱的临界轴压比与轴压比限值[J].建筑结构,2021,51(21): 64-67. LI Chushu,LI Li, CHEN Yunbo, et al. Critical and limit values of axial compression ratio for RC column[J]. Building Structure,2021,51(21):64-67.

Critical and limit values of axial compression ratio for RC column

LI Chushu, LI Li, CHEN Yunbo, WU Wenbo

(Beijing CIS Engineering Consulting Co., Ltd., Beijing 100043, China)

Abstract: The critical axial compression ratio of rectangular reinforced concrete (RC) column with symmetrical reinforcements was re-derived based on the basic principle of RC. The results show that this design value of this ratio for should be 0.5 or so, depend on those material properties of the section, instead of 0.9, and the ratio of design value to the characteristic value of this ratio is just more than 1.0, instead of the product of the partial factor for loads and the partial factor for materials, i. e., 1.63. In order to verify these results a simple numerical example was given by PM interaction cure. The limit value of axial compression ratio from the design codes was also discussed by the confined concrete model. **Keywords**: reinforced concrete column; the critical axial compression ratio; the limit value of axial compression ratio; PM interaction cure; confined concrete model

0 引言

我国《建筑抗震设计规范》(GBJ 11—89)^[1](简称 89 年抗震规范)引入了轴压比限值概念,在工程 界产生了广泛而深远的影响,无论是试验研究还是 相关规范编制,无论是工程设计还是设计审查,现在 都存在一种"唯轴压比"的倾向。

轴压比是一个简单而实用的工程设计参数,对 于初步估算柱的断面尺寸比较方便。近些年来,工 程界也在探讨轴压比限值的问题,因为工程上出现 了一些难以处理的问题,比如一些高层结构的柱断 面尺寸过大,由轴压比限值控制,基本上是构造配 筋;而另一方面,试验结果表明,轴压比越大,柱的延 性越差。因此目前工程界存在两种不同的看法:一 种是要放松轴压比限值,以期得到更合理的结构设 计;另一种是要严格轴压比限值,以保证抗震设计中 柱具有足够的延性。

89年抗震规范只有正文没有条文说明,《建筑 抗震设计规范》(GB 50011—2001)^[2] 6.3.7条文说 明中有:"希望柱子处于大偏心受压的弯曲破坏状 态,……本次修订仍以 89 规范的限值为依据"。笔 者所能找到最早公开发表对此问题进行研究的论文 是文献[3]。文献[3]从混凝土基本原理出发,将大 小偏压临界点的轴压比,即临界轴压比,视为轴压比 的限值;基于试验中的临界轴压比标准值,采用荷载 设计值与标准值之比及材料强度设计值与标准值之 比,推导出临界轴压比设计限值为 1.63 *ξ*_h,即 0.9 左右,得出了"我国现行抗震规范对抗震等级为三、 四级的柱轴压比限值规定为 0.9 是合适的"的 结论。

本文拟就钢筋混凝土柱的临界轴压比和轴压比 限值这两个概念分别进行分析和讨论。

1 临界轴压比

大小偏压临界轴压比设计值为 0.9 的结论不符 合对 PM 相关曲线的认识。图 1 是采用材料设计值 绘出的不同配筋率的 PM 相关曲线族,类似的图形

作者简介:李楚舒,博士,教授级高级工程师,Email: lies@cisec.cn。

图 1 不同配筋率的设计 PM 相关曲线族

在部分教材和桥梁规范,包括欧美规范及设计手册 中均有提及。从图 1 可以看出,矩形对称配筋的大 小偏压临界点的轴压比为 0.5 左右。

1.1 简化推导

大小偏压临界点(平衡点)的定义为:混凝土上 表面纤维压应变达到极限压应变 ε_{eu} ,底部钢筋拉 应变达到屈服应变 ε_v 。以对称配筋钢筋混凝土矩 形截面为例,截面应变分布如图2所示,截面轴 力为:

$$N = N_{\rm c} + \sum A_{\rm si} \sigma_{\rm si} \tag{1}$$

式中: N_{o} 为混凝土压力; A_{o} 和 σ_{o} 分别为各钢筋截 面面积及其应力。

假定钢筋轴力之和为零,则截面轴力为:

$$N = \alpha_1 f_c \beta_1 x_n b \tag{2}$$

根据图 2 的临界状态截面应变图,可以将式 (2)中的混凝土实际受压区高度 x_n 表达为混凝土极 限压应变 ε_{eu} 、钢筋屈服应变 ε_{x} 与有效高度 h_{0} 的关 系,即:

$$N = \alpha_1 \beta_1 b h_0 f_c \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{y}}$$
(3)

故,临界轴压比为:

$$n = \frac{N}{f_{\rm c}bh} = \alpha_1 \beta_1 \frac{h_0}{h} \frac{\varepsilon_{\rm cu}}{\varepsilon_{\rm cu} + \varepsilon_{\rm y}}$$
(4)

式中:混凝土等效矩形图参数 α_1, β_1 和 ε_{a1} 与混凝土 强度等级有关(C50及以下, α_1 , β_1 为常数); 钢筋屈 服应变设计值 ε_x 与钢筋等级有关; b 为截面宽度; h 为截面高度:f.为混凝土强度设计值。

从式(4)可以清楚地看出,矩形对称配筋的临 界轴压比只与截面材料属性有关。

假定 $h_0/h = 0.9$,采用强度等级在 C50 及以下 的混凝土,强度为HRB400的钢筋(屈服应变设计值 ε_v和标准值 ε_{vk}分别为 0.001 8,0.002)。

(1)采用材料标准值时,临界轴压比标准值为:

$$n_{k} = \alpha_{1}\beta_{1} \frac{h_{0}}{h} \frac{\varepsilon_{cu}}{\varepsilon_{cu} + \varepsilon_{yk}} = 0.45$$

(2)采用材料设计值时,临界轴压比设计值为:

$$n = \alpha_1 \beta_1 \frac{h_0}{h} \frac{\varepsilon_{\rm cu}}{\varepsilon_{\rm cu} + \varepsilon_{\rm y}} = 0.47$$

注意:本文在此问题上未考虑我国抗震设计的 承载力抗震调整系数 $\gamma_{\rm RE}$ 。

临界轴压比的设计值与标准值之比为:

$$\frac{n}{n_{k}} = \frac{\varepsilon_{cu} + \varepsilon_{yk}}{\varepsilon_{cu} + \varepsilon_{y}}$$
(5)

本文推导的前提假定完全同于文献[3],但所 得结论却有很大差别:1)本文得出的临界轴压比设 计值为 0.5 左右, 而文献 [3] 为 0.9;2) 本文得出的 临界轴压比的设计值与标准值之比为 1.0 左右, 而 文献[3]为1.63,即荷载分项系数与材料分项系数 的乘积。

造成上述结论差异的原因是:1)本文认为临界 轴压比是由大小偏压临界点得到的,可以通过临界 点的极限状态应变分布来直接得到,与截面属性相 关,与荷载无关;式(4)分别取截面材料的标准值和 设计值,就可以得到临界轴压比的标准值和设计值。 2) 文献 [3] 在推导过程中混淆了概念: 试验采用材 料标准值得到极限承载力标准值 N_{wk},是极限荷载 标定值 N⁰₄(可以理想化为"实际"极限荷载值),而 不是设计时采用的荷载标准值 N_k,二者的比值为 材料分项系数与荷载分项系数(可以分别取 1.4 和 1.2)的乘积,相当于安全系数 K = 1.68。

为了便于理解,举一个简单例子:C40 素混凝土 柱,截面尺寸为400mm×400mm,考察其轴心受压 极限承载力(不考虑稳定)。试验时采用材料标准 值,得到构件的极限承载力标准值 $N_{\mu k} = f_{e k} A =$ 4 288kN,即极限荷载标定值 $N_k^0 = N_{uk} = 4$ 288kN;设 计时采用材料设计值,得到极限承载力设计值 N

 $f_{e}A = 3$ 056kN, 那么极限荷载设计值 $N = N_{u} = 3$ 056kN。但设计荷载标准值 N_{k} 并不是极限荷载标定值 N_{k}^{0} ,应该用极限荷载设计值 N 除以荷载分项 系数得到,也可以用 $N_{k} = N_{k}^{0}/K = 2$ 552kN。

为了进一步验证本文的推导,下面给出一个具体的数值算例。

1.2 数值算例

一个简单对称配筋混凝土截面:截面尺寸为 400mm×400mm,混凝土强度等级为 C40,钢筋强度 为 HBR400,8 根 ϕ 20 钢筋,等间距排布, h_0 = 360mm。采用 CiSDesigner^[4]软件得到的 *PM* 相关曲 线如图 3 所示(*C* 和 C_k 分别为设计值和标准值的临 界点):

根据材料标准值的 PM 相关曲线,可知临界轴 压比标准值为: n_k = 0.45。

根据材料设计值的 PM 相关曲线,可知临界轴 压比设计值为: n = 0.48。

可以看出,数值算例的临界轴压比与1.1节中的推导结果吻合。存在的数值差异(式(4)计算的结果比数值算例略小)的主要原因是:式(4)推导时采用了钢筋合力为零的假定。如果存在腰部钢筋, 当底部受拉钢筋达到屈服、混凝土达到极限压应变的时候,中性轴位于截面形心主轴之下,故钢筋的合 力为压力(参见图2)。

同样地,通过材料标准值得出的 PM 相关曲线, 由截面的极限承载力标准值(M_{uk}, P_{uk})所构成,也 就是极限荷载标定值(M⁰_k, P⁰_k),此 PM 相关曲线表 示的是极限荷载标准值(效应),而非设计荷载标准 值(效应),它们之间存在安全系数 K 的关系。通过 材料设计值得出的 PM 相关曲线,为截面的极限承 载力设计值(M_u, P_u)所构成,此时采用荷载设计 值,保证了截面设计具有 K 的安全系数。

一般说来,设计轴压比对于工程设计有意义。

2 PM 相关曲线

*PM*相关曲线是钢筋混凝土柱的核心概念之一,由混凝土和钢筋这两种不同材料组成的截面,极限承载力存在 *P*_u与 *M*_u的相关性。根据钢筋和混凝土的本构方程,基于平截面假定,给定混凝土受压极限应变和钢筋受拉极限应变,即破坏准则,就可以生成 *PM*相关曲线。换言之,*PM*相关曲线是钢筋混凝土柱极限承载能力的包络线,荷载点位于 *PM*相关曲线(三维就是 *PMM*相关面)上,就说明截面达到承载力极限状态。

因为柱设计基本上写不出适合手算的一般性设 计公式(原因为无法考虑所有钢筋的贡献及双偏压 更是无法实现手算),所以这个 PMM 相关面就是柱的基本设计依据,因此欧美规范^[5-6]都没有给出正截面承载力设计的具体公式。图 4 给出了一条典型的 PM 相关曲线,C 点即为临界点。

图 5 是 CiSDesigner 软件^[4]为了快速生成 *PM* 相关曲线而采用的截面极限状态应变控制线。图中 3 号线代表了混凝土上表面达到受压极限应变 ε_{eu} , 同时底部钢筋达到受拉屈服应变 ε_y ,这就是对应图 4 中的 *C* 点,即临界点。亦可从图 5 中得到界限压 区高度 $\xi_b = \beta_1 \frac{\varepsilon_{eu}}{\varepsilon_{eu} + \varepsilon_y}$ 。鉴于与本文的研究内容的 相关性,不再对其余各条应变控制线进行一一介绍。

截面极限状态应变控制线

采用平截面假定和混凝土及钢筋的设计本构模型,可以得到任意截面和任意配筋形式的 PM 相关曲线。PM 相关曲线是截面自身特性,与外荷载无关,所以 PM 相关曲线上临界点(C 点)的轴压比比由式(4)得到的计算结果更具普遍意义。

3 轴压比限值

我国《建筑抗震设计规范》(GB 50011—2010) (2010 年版)^[7](简称 10 年抗规)和《混凝土结构设 计规范》(GB 50010—2010)^[8](简称混凝土规范)分 别在 6.3.6 条和 11.4.16 条里规定柱的轴压比限 值。条文说明里也都讲到这是为了保证柱的延性, 而且与箍筋形式和配箍率有关。以框架柱为例,规 范规定的轴压比限值在 0.65~0.90 之间。 从第1节中可以看出,临界轴压比设计值为 0.5左右,这与规范轴压比限值相差较大。

第1节公式推导的是正截面极限承载力设计的 方法,采用的是单轴(非约束)混凝土的本构关系, 不能考虑箍筋约束的作用。为了考虑箍筋约束效 应,需采用约束混凝土本构来分析轴压比限值的 问题。

我国现有规范并未给出约束混凝土的本构模型,由于我国混凝土规范与欧洲混凝土规范 EC2^[5] 在许多理念是相同或相似,下面采用欧洲混凝土规 范 EC2 给出的约束混凝土本构模型做一个简化的 推导。

根据欧洲混凝土规范 $EC2^{[5]}$ 的 3.1.9 条,当侧 向约束应力 σ ,等于 0.05 倍混凝土抗压强度标准值 f_{ct} 时,混凝土本构(Rüsch 模型)的参数可取为 ε_0 = 0.003 和 ε_m = 0.013 0。 而我国混凝土规范规定的 强度等级在 C50 以下的混凝土设计本构模型为 ε_0 = 0.002 和 ε_m = 0.003 3。这样就可以求出其对应的 等效矩形应力图参数 α₁ = 0.997 和 β₁ = 0.926。 而 我国强度等级在 C50 以下的混凝土设计本构的 $\alpha_1 = 0.969$, 规范取 1.0; $\beta_1 = 0.824$, 规范取 0.8_o 采用与1.1节相同的截面材料和参数,假定受压全 截面为约束混凝土(与实际情况略有差异,但不影 响主要结论),由式(4)可以得到临界轴压比为 n = 0.73。可见采用约束混凝土模型,柱的临界轴压比 提高了50%以上,因为混凝土极限压应变大幅提高 了,幅度与配箍率有关。这个简化方法得出的临界 轴压比基本处于我国 10 年抗规和混凝土规范规定 的轴压比限值的中间值。

但是,我国 10 年抗规和混凝土规范将轴压比限 值与抗震等级挂钩的做法值得商榷。抗震等级越高,柱配箍率要求本来就越大,从约束混凝土本构模 型可以获知,其极限压应变就更大,因此理论上临界 轴压比更大,而 10 年抗规和混凝土规范却将其轴压 比限值定得更低。

显然,我国 10 年抗规和混凝土规范规定的柱轴 压比限值不能用文献[3]的结论来进行解释。

如果采用欧洲混凝土规范 EC2^[5]常用的钢筋材料 ($\varepsilon_y = 0.0025$),可以得到临界轴压比n = 0.70,这与 欧洲抗震规范 EC8^[9]对中等延性 DCM 柱的轴压比 限值为 0.65 比较接近。

美国设计规范^[6]没有轴压比限值的相关规定。 需要指出的是,轴压比只是柱延性的一个参数, 而非全部,需要进一步了解相关内容的读者可参阅 扶长生所著《抗震工程学——高层混凝土结构分析 与设计》^[10]一书,在第4章有详细论述。简言之,柱 的延性与柱的形状、纵向配筋率、轴压比等因素相 关,而最大的相关因素是配箍率。新西兰混凝土设 计规范 NZS 3101 : 2006^[11]中就有相关的设计公式 和图表,高轴压比采用高配箍率,以保证柱具有足够 的延性。

4 结论

临界轴压比是 PM 曲线上的临界点(平衡点) 的轴压比。矩形截面对称配筋的临界轴压比设计值 为 0.5 左右,而非 0.9;临界轴压比的设计值与标准 值之比为 1.0 左右,而非 1.63。

我国 10 年抗规和混凝土规范给出的轴压比限 值,采用约束混凝土本构模型可以得到一定程度的 验证。

参考文献

- [1] 建筑抗震设计规范:GBJ 11-89 [S].北京:中国建筑 工业出版社,1989.
- [2] 建筑抗震设计规范:GB 50011—2001[S].北京:中国 建筑工业出版社,2002.
- [3] 程文瀼,李爱群,张晓峰,等.钢筋混凝土柱的轴压比 限值[J].建筑结构学报,1994,15(6):25-30.
- [4] CiSDesigner v1.7.0软件技术说明书[M].北京:北京 筑信达工程咨询有限公司,2018.
- [5] Eurocode 2: Design of concrete structures-part 1-1: General rules and rules for buildings: EN 1992-1-1 [S].
 Brussels: European Committee for Standardization, 2004.
- [6] Building code requirements for structural concrete (ACI 318-14) and commentary: ACI 318 ERTA—2014 [S].
 Michigan: America Concrete Institute, 2014.
- [7]建筑抗震设计规范:GB 50011-2010[S].北京:中国 建筑工业出版社,2010.
- [8] 混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
- [9] Eurocode 8: Design of structures for earthquake residence—Part 1: General rules, seismic actions and rules for buildings : prEN 1998-1: 2003 (E) [S]. Brussels:European Committee for Standardization, 2004.
- [10] 扶长生. 抗震工程学——高层混凝土结构分析与设计 [M]. 北京:科学出版社, 2020.
- [11] Concrete structures standard part 1-the design of concrete structures: NZS 3101: 2006 [S]. New Zealand: New Zealand Council of Standards, 2006.

【温馨提示】"工程应用常见问题案例解析"专栏基于工程案例阐释软件应用的常见问题及解决方法,希望为遇到类 似问题的工程师提供参考。本栏目中的所有案例均来自筑信达软件用户,软件模型归属设计单位,相关内容仅用于软件应 用技术的探讨。如有不妥,请联系我们删除。

某平台结构分析异常的原因

本案例主要分析框架端部释放可能引起的一些问题。

JAF 2000 V23.3.0

某平台结构如下图所示。

该模型无法正常运行分析,并给出警告,如下图所示。

解决办法/SOLUTION

通常情况下,当我们发现程序给出负特征值个数(NUMBER OF NEGATIVE EIGENCALUES)不为0的警告时,会采用标准求 解器重新对结构进行分析,这时程序会给出具体出现问题的节点信息,如下图所示。

un 1 NUMBER OF EQUATIONS TO SOLVE = 258 * * * W A R N I N G * * * * NUMERICAL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: TYPE LABEL DOF X-COORD Y-COORD Joint 35 UX 3276.312 1649.297 Joint 39 UX 3276.312 1649.297 1100.000	258 LUTION: ORD PROBLEM VALUE 000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.182-12	OF EQUATIONS TO SOLVE = 258 A R N I N G * * * AL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM VALUE 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 30 UX 3276.312 1649.297 1100.000 Lost
NUMBER OF EQUATIONS TO SOLVE = 258 * * * W R R N I N G * * * NUMERICAL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: TYPE LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM Joint 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 d Joint 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.1	258 LUTION: ORD PROBLEM VALUE 000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.18E-12	OF EQUATIONS TO SOLVE = 258 A R N I N G * * * AL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM VALUE 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
* * * W A R N I N G * * * NUMERICAL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: TYPE LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM Joint 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 d Joint 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.1	DLUTION: ORD PROBLEM VALUE 000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.18E-12	A R N I N G * * * AL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM VALUE 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
NUMERICAL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: TYPE LABEL DOF X-COORD Y-COORD 2-COORD PROBLEM Toint 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 d Joint 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.1	LUTION: ORD PROBLEM VALUE 000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.18E-12	AL PROBLEMS ENCOUNTERED DURING EQUATION SOLUTION: LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM VALUE 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * ** VE LOSS OF ACCURACY WAS DEFECTED DURING THE SOLUTION OF EQUATIONS
TYPE LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM Joint 39 UX 3276.312 1649.287 1100.000 Lost accuracy 14.8 d Joint 39 UX 3276.312 1649.287 1100.000 Lost accuracy 14.8 d	ORD PROBLEM VALUE 000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.182-12	LABEL DOF X-COORD Y-COORD Z-COORD PROBLEM VALUE 39 UX 3276.312 1549.237 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.237 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
TYPE LABEL DOF A=COORD I=COORD I=COORD	ODD PROBLEM VALUE	LABEL DOF X-COORD 2-COORD PROBLEM VALUE 39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 VA R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS 000 Diagonal < 0 -3.18E-12
Joint <u>39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 d</u> Joint 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.1	000 Lost accuracy 14.8 digits 000 Diagonal < 0 -3.18E-12	39 UX 3276.312 1649.297 1100.000 Lost accuracy 14.8 digits 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS 000 Diagonal < 0 -0
Joint 39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.1	000 Diagonal < 0 -3.18E-12	39 UX 3276.312 1649.297 1100.000 Diagonal < 0 -3.18E-12 A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
		A R N I N G * * * VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
* * * 77 * 79 *77 *7 *77 *7 ** *		VE LOSS OF ACCURACY WAS DETECTED DURING THE SOLUTION OF EQUATIONS
* * * WAKNING * * *	E SOLUTION OF FOUNTIONS	The second of according to the second of a
NUMBER OF DIGITS LOST EXCERDED 11.0	E SOLUTION OF EQUATIONS	OF DIGITS LOST EXCEEDED 11.0

但是检查模型时,发现 **39** 号节点似乎并未发生任何问题。再观察结构整体变形时发现,大部分节点在 **DEAD** 工况下发生 了刚体变形,如下图,因此推测是结构整体出现约束不足的情况。

5 Joint	Displacem	ents							
文件(F)	视图(V)	编辑(E) 格	式-过濾-排序(M) 选择(S)	选项(O)				
单位:见注	E释					J	oint Displacemer	nts	
回滤器:									
	Joint Text	OutputCase	CaseType Text	U1 mm	U2 mm	U3 mm	R1 Radians	R2 Radians	R3 Radians
•	13	DEAD	LinStatic	-560000000	13.989551	171.704058	-0.618152	-2239868646	0.29751
	14	DEAD	LinStatic	-560000000	6.764134	318.372287	0.605392	-2239868646	0.29970
	15	DEAD	LinStatic	-560000000	13.346648	169.119261	-0.618106	-2239868646	0.29790
	16	DEAD	LinStatic	-560000000	6.125467	304.574278	0.606089	-2239868646	0.29933
	17	DEAD	LinStatic	-560000000	6.764071	-32.984863	0.608891	-2239868646	0.29972
	18	DEAD	LinStatic	-560000000	6.125409	-32.943426	0.609181	-2239868646	0.29935
	19	DEAD	LinStatic	-560000000	13.98953	-32.439651	-0.618798	-2239868646	0.29751
	20	DEAD	LinStatic	-560000000	13.346628	-32.428471	-0.618727	-2239868646	0.29789
	21	DEAD	LinStatic	-560000000	6.546761	-264.480948	-6.725198	-2.6E-05	-0.00042
	22	DEAD	LinStatic	-560000000	6.546867	-5348.4122	-6.734573	-2.6E-05	-0.00047
	23	DEAD	LinStatic	0	0	0	-0.062694	-2239868646	0.13245
	24	DEAD	LinStatic	0	0	0	-0.061883	-2239868646	0.13142
	25	DEAD	LinStatic	0	0	0	0.053443	-2239868646	0.13448
	26	DEAD	LinStatic	0	0	0	0.053599	-2239868646	0.1348
	27	DEAD	LinStatic	-246400000	-1 376573	-14 266792	0 133178	-2239868646	0 13142

应当注意,程序给出警告的节点位置是计算出现问题的地方,并不一定都是错误发生的地方(虽然很多时候确实是错误发生的地方)。再去观察这个结构时发现,由于 X 方向柱底和梁端都是铰接,形成了机构,所以导致整个结构在 U1 方向产生异常大的位移。

解决办法就是增加结构 X 方向的约束,将柱底约束改为固结即可正常计算。但是当我们将柱底约束改为固结时,发现另一个问题: DEAD 工况下,悬挑梁将扭矩传递至框架梁的一端而不是两端。

这是由于用户想模拟框架梁端部铰接,所以进行了端部释放,而在端部释放时,很多用户似乎约定俗成的按照下图进行 端部释放,即释放一端的扭矩和两端的弯矩。

kN-m/rad
kN-m/rad

如果没有悬挑梁,这样的端部释放不会造成显著影响,但是当存在有悬挑梁就不太妥当了,因为起点的扭矩被释放掉,使得扭矩只能向终点传递,就会出现问题中所示的情况。如果端部释放时取消扭矩的释放,结果会更加合理。

编写:吴文博

使用非线性时程分析模拟非线性静力加载

本案例主要介绍使用非线性时程分析模拟非线性静力加载时的注意事项。

如图所示,模型为三层框架,在各楼层顶部作用有集中力,结构布置有塑性铰,工况中未考虑几何非线性。

模型中定义了一个非线性时程工况和一个非线性静力工况,用户认为两者应该是近似等效的,但是计算的位移等结果差 异较大,如下图所示。

	Join	nt Displaceme	ents								-
	文件(F)) 视图(V)	编辑(E) 格	试-过濾-排序(M) 选择(S)	选项(O)					
<u>i</u> j	单位: 贝 过滤器:	Ū注释 : StepType = 'm	iax'				J	oint Displacemer	nts		
		Joint Text	OutputCase	CaseType Text	StepType Text	U1 mm	U2 mm	U3 mm	R1 Radians	R2 Radians	R3 Radians
	►	4	F	NonStatic	Max	144.12516	271.02155	1.457183	-0.007421	0.005684	-3.1E-05
		4	initial-time	NonDirHist	Max	164.742448	314.238971	1.494289	-3.8E-05	0.005896	4.8E-05

其中工况"F"为非线性静力工况的结果,"initial-time"为非线性时程分析的结果,余同。

解决办法/SOLUTION

 原模型中**时程函数**时间过短。一般情况下,我们认为只有当时程分析做缓慢加载时才与静力分析等效,否则过大的 惯性力和阻尼力会引起较大的误差。原模型中时程函数加载时间仅 1 秒,不符合缓慢加载的假定,建议加载时间取 为 100s 以上(10 倍基本周期以上)。下图为原模型中时程函数和基底反力结果:

原模型时程函数定义

S Base Reactions

文件(F)) 视图(V)	编辑(E) 格	鉽-过滤-排序(N	M) 选择(S)	选项(O)				
单位: 贝	注释						Base Reactions		
过滤器:	StepType = 'm	in'							
	OutputCase	CaseType Text	StepType Text	GlobalFX KN	GlobalFY KN	GlobalFZ KN	GlobalMX KN-m	GlobalMY KN-m	GlobalMZ KN-m
 ►	F	NonStatic	Min	-1620	-2430	942 525	13770.0006	-10530.0001	0.0009377
		Nonotatio		1020	2.00	012.020			

原模型时程工况与静力工况基底反力结果

如上图所示,原模型中时程工况的基底反力较非线性静力工况大约 2%左右,但是对于非线性分析,其造成的位移误 差可能会远大于 2%。

- 2、时程工况的分析步长过大。时程工况的分析步长宜小于所关心周期的 1/10,原模型中时程工况分析步长为 0.1s,而 结构基本周期为 0.45s 左右,质量参数系数达到 90%时的周期为 0.12s,建议取分析步长为 0.01s。
- 3、收敛容差与保存步数。虽然时程工况与非线性静力工况的收敛容差是相同的,但是由于时程工况将分析划分了更多的子步,实际上精度更高,如果希望两者的计算结果更加接近,需要将非线性静力分析的结果保存步数增加,取值可与时程分析接近。

S 非线性静力分析 - 结果保存	>
结果保存	
○ 取 ※ 次 心 状态数里	● 多个状态
最小值	1000
載大值 同 四 四 七 五 的 位 2 四 四 一	1000
☑ 12 休仔正的应移增里	TTR No.
如用元	

非线性静力分析的结果保存步数

经过以上修改后,非线性时程工况与非线性静力工况的计算结果非常接近,其中 F-1 为修改后的非线性静力工况。计算

结果如下图所示。

S Joir	nt Displaceme	ents								-
文件(F) 视图(V)	编辑(E) 格	式-过濾-排序(N	/) 选择(S)	选项(O)					
单位: 5 过滤器	见注释 :StepType = 'n	nax'					Joint Displacemen	its		
	laint	Outra tito and	CasaTuna	StenType	114	112	112	D4		
	Text	OutputCase	Text	Text	mm	mm	mm	Radians	RZ Radians	R3 Radians
•	Text 4	initial-time	Text NonDirHist	Text	mm 141.857672	264.794953	mm 3 1.456418	Radians -3.8E-05	Rz Radians 0.005664	R3 Radians 3.1E-05

修改后 4#节点位移

S Base Reactions

文件(F) 视图(V)	编辑(E) 格	式-过濾-排序(M) 选择(S)	选项(O)				
单位: 贝	见注释						Base Reactions		
过滤器	StepType = 'm	in'							
	OutputCase	CaseType Text	StepType Text	GIODAIFX	GlobalFY KN	GlobalFZ	GlobalMX KN-mm	GlobalMY KN-mm	GlobalMZ KN-mm
	outputCase	CaseType Text	Step Type Text	GlobalFX KN	GlobalFY KN -2429 354	GlobalFZ KN 942 524	GlobalMX KN-mm	GlobalMY KN-mm	GlobalMZ KN-mm
•	initial-time	CaseType Text NonDirHist	Step Type Text Min	GlobalFX KN -1619.729	GlobalFY KN -2429.354	GlobalFZ KN 942.524	GlobalMX KN-mm -1.49E-09	GlobalMY KN-mm -10528254.7	GlobalMZ KN-mm -232.54

修改后结构基底反力

编写:吴文博

35

施工阶段划分对收缩徐变的影响

本案例主要介绍阶段施工分析中考虑收缩徐变时不同的阶段时长划分对计算结果的影响。

该模型为预应力混凝土框架结构,整体布置如下图所示。该结构主要分为两个部分施工,其中顶板设置有后浇带,具体 位置如下图所示。

对该模型进行阶段施工分析,并考虑混凝土的收缩及徐变效应。其中阶段施工的第七阶段"STAGE 7",已完成所有结构的施工,第八阶段"STAGE 8"用于考虑施工完成 260 天后混凝土收缩及徐变对结构的影响,其定义方式如图 2-a 所示。但是如果将 260 天的时间流逝分为 6 个阶段(50×5+10 天)计算时,如图 2-b 所示。在最终阶段,两种定义方式计算的楼板顶部 应力 s22 差异很大,如图 3-a 和图 3-b 所示。

S 阶段树 - STAGED1- one step	S 阶段树 - STAGED1- steps
展开全部 全部折叠	展开全部 全部折叠
Image: Stage 1: Start Time = 0. Days; Duration = 20. Days; Provide Output; Image: Stage 2: Start Time = 20. Days; Duration = 0. Days; Provide Output; Image: Stage 3: Start Time = 20. Days; Duration = 10. Days; Provide Output; Image: Stage 4: Start Time = 30. Days; Duration = 10. Days; Provide Output; Image: Stage 4: Start Time = 50. Days; Duration = 10. Days; Provide Output; Image: Stage 5: Start Time = 50. Days; Duration = 30. Days; Provide Output; Image: Stage 7: Start Time = 90. Days; Duration = 0. Days; Provide Output; Image: Stage 8: Start Time = 90. Days; Duration = 20. Days; Provide Output;	Image: Stage 1: Start Time = 0. Days; Duration = 20. Days; Provide Output; Image: Stage 2: Start Time = 20. Days; Duration = 0. Days; Provide Output; Image: Stage 2: Start Time = 20. Days; Duration = 0. Days; Provide Output; Image: Stage 3: Start Time = 20. Days; Duration = 10. Days; Provide Output; Image: Stage 3: Start Time = 30. Days; Duration = 10. Days; Provide Output; Image: Stage 5: Start Time = 50. Days; Duration = 10. Days; Provide Output; Image: Stage 6: Start Time = 60. Days; Duration = 30. Days; Provide Output; Image: Stage 7: Start Time = 90. Days; Duration = 0. Days; Provide Output; Image: Stage 8: Start Time = 90. Days; Duration = 50. Days; Provide Output;
	 SQ2 STAGE 9: Start Time = 140. Days; Duration = 50. Days; Provide Output STAGE 10: Start Time = 190. Days; Duration = 50. Days; Provide Outpu STAGE 11: Start Time = 240. Days; Duration = 50. Days; Provide Output

图 2-a 单个阶段

图 2-b 多个阶段

STAGE 12: Start Time = 290. Days; Duration = 50. Days; Provide Output; Start Time = 340. Days; Duration = 10. Days; Provide Output;

工程应用常见问题案例解析

解决办法/SOLUTION

两种计算结果不一致的原因是施工阶段分析中混凝土的计算时间步长划分不合理。对于静定结构,收缩徐变不会导致结构内力分布的变化。但是对于超静定结构,徐变会导致构件应力的重分布,应力的重分布反过来又会影响徐变荷载的变化,因此计算时采用合理的计算时间步长是很重要的。

由于混凝土的龄期越小其收缩徐变的效应越明显,因此在龄期较小的时候需要使用较小的计算时间步长。计算的时间步 长越小其计算结果也就越精确。对于某一个施工阶段,建议查看模型该阶段中混凝土的最小龄期,保证该阶段的计算步长不 大于混凝土的最小龄期,计算步长设置的越小,其结果越精确。例如,某一个施工步是在上一步结构完成后的第 10 天时添加 混凝土,那么该施工步混凝土的最小龄期为 10 天。计算时需要保证该阶段的计算步长不大于 10 天,可设置一个较小的时间 步长,如 2 到 5 天。

问题模型中将 260 天的时间流逝分为 6 个阶段,阶段时长按 "50 天×5+10 天"划分是不合理的。由于混凝土龄期较小时 计算的时间步长需要更小,因此初始阶段的步长应该更小才合适。如果想使用 6 个独立的阶段计算,那么建议采用时间步长 为 5+10 +20+35+65+125=260 (单位:天),或者类似分布的时间步长。该模型时间步长调整为 5+10 +20+35+65+125 后的计算 结果如图 4-b 所示,其结果趋于合理。

	4
展开全部	全部折叠
🗄 🌃 STAGE 1:	Start Time = 0. Days; Duration = 20. Days; Provide Output;
STAGE 2:	Start Time = 20. Days; Duration = 0. Days; Provide Output;
STAGE 3:	Start Time = 20. Days; Duration = 10. Days; Provide Output;
STAGE 4:	Start Time = 30. Days; Duration = 20. Days; Provide Output;
STAGE 5:	Start Time = 50. Days; Duration = 10. Days; Provide Output;
STAGE 6:	Start Time = 60. Days; Duration = 30. Days; Provide Output;
STAGE 7:	Start Time = 90. Days; Duration = 0. Days; Provide Output;
STAGE 8:	Start Time = 90. Days; Duration = 5. Days; Provide Output;
STAGE 9:	Start Time = 95. Days; Duration = 10. Days; Provide Output;
	Start Time = 105. Days; Duration = 20. Days; Provide Output;
	Start Time = 125. Days; Duration = 35. Days; Provide Output;
	Start Time = 160. Days; Duration = 65. Days; Provide Output;
STAGE 13:	Start Time = 225, Davs: Duration = 125, Davs: Provide Output:

图 4-a 工况定义

_{编写: 吕良} 37

索建模的初始几何位置

本案例主要分析索建模时其初始几何位置的问题。

该模型为两跨 20m 柔性支架模型,结构布置如下图所示。

✓ 问题描述/PROBLEM

该结构中的索通过"索-未变形长度"的方式定义,如图 2 所示,变形前索长为 20m。在建模时分别勾选该窗口中 "变 形前几何形状"和"变形后几何形状"两个选项建立了两个不同的模型,模型 A 和模型 B。并分别为这两个模型中的索指定 了相同的目标力 160KN。运行目标力工况后,两种定义方式的索内力基本一致,如图 3-a 和图 3-b 所示;但是两者的变形(U3 方向的位移)却相差很大。其中模型 A 跨中节点竖向位移为-0.4051mm,如图 4-a 所示。模型 B 跨中节点向上移动了 143.2541mm, 如图 4-b 所示,这是为何?

±(F)	(编辑(F)									
12:00	h				索参数					
, tas≁	К #I	索		~	分段数	₽		16	副新	
n er er	5 3 2	赤 本亦平	と度		单位长度	ー 的欧hhn重量		0		
** ** *	· 二型 新 - 本文形状版 ~					而的均布荷载		0.	-	
畝面り	載性	CABI		~	「端张ナ	1		4.8662		
		х	Y	z	「満代す	7		4 8662		
記点		20000.	-7565.04	3000.	张力水	, 平分量		4.8642		
10 JE		0	-7565.04	3000						
≈点 □ 広 ⊧	日百框架模排	0. 0. cc			最大垂	度		夏形局 143.6139	受形剤	
					最低占	最任占兵度				
}段选项	<u>م</u>				长度	长度			20000	
)単・	个对象				相对长	相对长度			- 1	
	· 개敏·等长	12			10.45.25			200 (A)		
) .	いける・筆弦	也影と度			100 m	2.4.1		+1 <u>2</u>		
/ >	1 73 34 - 77 324	12 20 10 20			GLOI	DAL	~	KN, II	ini, c 🗸	
}段点4	と标 (Undeform	ned Cable Geometr	y)					平面视图		
● 变 f	12前几何形4	伏		○ 変形后	几何形状					
点	x	Y	z	垂度	相对距离	相对距离	^			
0	20000.	-7565.04	3000.	0.	0.	0.				
1	18750.	-7565.04	3000.	0.	1250.	0.0625				
2	17500.	-7565.04	3000.	0.	2500.	0.125				
3	16250.	-7565.04	3000.	0.	3750.	0.1875				
4	15000.	-7565.04	3000.	0.	5000.	0.25				
5	13750.	-7565.04	3000.	0.	6250.	0.3125				
6	12500.	-7565.04	3000.	0.	7500.	0.375				
7	11250.	-7565.04	3000.	0.	8750.	0.4375		1		

图 2 定义初始状态

工程应用常见问题案例解析

显示位移差异较大主要是由于索建模的初始位置不同。索各段节点的初始坐标由【索的初始几何信息】窗口"分段点坐标"中的选项"变形前几何形状"或"变形后几何形状"确定。定义索的初始几何信息时,程序会依据索两端点的位置和索的无应力长度,计算索在自重作用下的初始几何位置,即各个分段点的坐标。对于模型 A,索的初始几何位置是通过索变形前各控制点的坐标绘制的,如图 5-a 所示,可以看到各个控制点的 z 坐标均为 3000mm。对于模型 B,索的初始几何位置是依据索变形后的各控制点绘制的,其坐标如图 5-b 所示。可以看到各个控制点的 z 轴坐标均不相同,其跨中节点 z 坐标为2856.3861mm。

点	X	Y	Z	垂度	相对距离	相对距离
0	0.	8434.9602	3000.	0.	0.	0.
1	1250.	8434.9602	3000.	0.	1250.	0.0625
2	2500.	8434.9602	3000.	0.	2500.	0.125
3	3750.	8434.9602	3000.	0.	3750.	0.1875
4	5000.	8434.9602	3000.	0.	5000.	0.25
5	6250.	8434.9602	3000.	0.	6250.	0.3125
6	7500.	8434.9602	3000.	0.	7500.	0.375
7	8750.	8434.9602	3000.	0.	8750.	0.4375
8	10000.	8434.9602	3000.	0.	10000.	0.5
9	11250.	8434.9602	3000.	0.	11250.	0.5625
10	12500.	8434.9602	3000.	0.	12500.	0.625
11	13750.	8434.9602	3000.	0.	13750.	0.6875
12	15000.	8434.9602	3000.	0.	15000.	0.75
13	16250.	8434.9602	3000.	0.	16250.	0.8125
14	17500.	8434.9602	3000.	0.	17500.	0.875
15	18750.	8434.9602	3000.	0.	18750.	0.9375
16	20000.	8434.9602	3000.	0.	20000.	1.

图 5-a 变形前节点的坐标

点	x	Y	Z	垂度	相对距离	相对距离
0	0.	8434.9602	3000.	0.	0.	0.
1	1249.7182	8434.9602	2966.3458	33.6542	1250.1712	0.0625
2	2499.549	8434.9602	2937.1762	62.8238	2500.3424	0.125
3	3749.4765	8434.9602	2912.4923	87.5077	3750.5136	0.1875
4	4999.4845	8434.9602	2892.2952	107.7048	5000.6848	0.25
5	6249.557	8434.9602	2876.5854	123.4146	6250.856	0.3125
6	7499.6778	8434.9602	2865.3637	134.6363	7501.0272	0.375
7	8749.8309	8434.9602	2858.6306	141.3694	8751.1983	0.4375
8	10000.	8434.9602	2856.3861	143.6139	10001.369	0.5
9	11250.169	8434.9602	2858.6306	141.3694	11251.541	0.5625
10	12500.322	8434.9602	2865.3637	134.6363	12501.712	0.625
11	13750.443	8434.9602	2876.5854	123.4146	13751.883	0.6875
12	15000.515	8434.9602	2892.2952	107.7048	15002.054	0.75
13	16250.523	8434.9602	2912.4923	87.5077	16252.225	0.8125
14	17500.451	8434.9602	2937.1762	62.8238	17502.397	0.875
15	18750.282	8434.9602	2966.3458	33.6542	18752.568	0.9375
16	20000.	8434.9602	3000.	0.	20002.739	1.

图 5-b 变形后节点坐标

将这两个模型跨中节点的坐标及位移整理到下侧表格,并计算跨中节点的最终 z 坐标。可以看到两个模型计算的跨中节 点最终位置基本相同,相差小于 1%。两者最终位移稍有不同原因是由于目标力工况中两者的索力并非完全相同。由此可知, 虽然索的初始建模坐标不同,但是在相同的工况下这两种方式建立的模型是等效的。

跨中节点	模型 A	模型 B
初始 z 坐标(单位 mm)	3000	2856.3861
竖向位移(单位 mm)	-0.4051	143.2541
最终 z 坐标(单位 mm)	3000-0.4051=2999.595	2856.3861+143.2541=2999.640

编写: 吕良

地下管廊柱轴力"上大下小"的原因

本案例主要介绍采用 SAP2000 软件分析某地下管廊结构时,恒载 DEAD 工况下柱顶轴压力大、柱底轴压力小的原因。

如图 1 所示,某地下管廊结构由框架单元和壳单元组成。其中侧壁上施加了侧向土压力,框架上施加了相应的节点荷载 (图 2),板底用面弹簧来模拟地基基础协调变形。

图1 地下管廊结构模型

图 2 框架上的节点荷载(恒载)

²问题描述/PROBLEM

该模型运行分析后发现,恒载作用下,框架柱的柱顶轴压力大,柱底轴压力小(图3)。请问,这是什么原因?

S E	ement Forces	- Frames							
文件	(F) 视图(V)	编辑(E) 格	武-过濾-排序(M) 选择(S)	选项(O)				
单位:) 过滤器	见注释 §:								E
	Frame Text	Station m	OutputCase	CaseType Text	StepType Text	P KN	V2 KN	V3 KN	Ī
•	32	0	DEAD	LinStatic		-347.974	-59.624	11.714	Γ
	32	0.8375	DEAD	LinStatic		-310.287	-59.624	11.714	Γ
	32	0.8375	DEAD	LinStatic		-392.587	84.255	11.799	Γ
	32	1.675	DEAD	LinStatic		-354.9	84.255	11.799	Γ
	32	1.675	DEAD	LinStatic		-467.965	118.436	10.736	Γ
	32	2.5125	DEAD	LinStatic		-430.277	118.436	10.736	Γ
	32	2.5125	DEAD	LinStatic		-558.614	152.514	4.998	Ī
	32	3.35	DEAD	LinStatic		-520.926	152.514	4.998	Ī
		0					ō,		÷

图 3 框架柱的柱底(0m 处)和柱顶(3.35m 处)轴力(恒载工况)

解决办法/SOLUTION

可以用一个更简化的例子来说明该现象:图4为一面墙,墙体用壳单元模拟,墙居中位置布置一框架柱,在框架柱顶部施加100kN的竖向力,墙底施加点弹簧约束,同时考虑结构自重。运行分析后,查看单元内力。图5为柱轴力图和墙体的内力分布图。从图5可以看出,柱的竖向力从柱顶开始逐渐减小。因为竖向力通过柱和墙的协调变形,将其中一部分力转移到周边墙体。使得框架柱的轴力存在"上大下小"的趋势。而地下管廊结构的板底采用的是面弹簧,在竖向恒载作用下,墙体和框架柱的协调变形,也会产生类似效应。这就是地下管廊结构32号柱子轴力"上大下小"的原因。

编写:郑翔

净/毛面积比对檩条不起作用

程应用常见问题案例解析

本案例主要介绍采用 SAP2000 软件分析某光伏支架时,净/毛面积比不起作用的原因和处理方法。

某光伏支架结构(图1),柱底固定,檩条采用C型截面。

通过【设计>钢框架设计>查看修改覆盖项】命令,把檩条的净毛面积比从 0.95 修改为 0.85 后,其应力比完全没有变化,请问这是什么原因?

	项	教值
19	总限值L/	程序默认
20	净挠度限值L/	程序默认
21	恒载限值abs	程序默认
22	(附加恒载+活载)限值abs	程序默认
23	活载限值abs	程序默认
24	总限值 abs	程序默认
25	净挠度限值abs	程序默认
26	指定反拱值	程序默认
27	净/毛面积比	0.85
28	沽何载折狐糸数	<u> </u> 桯
29	无支撑长度系数(主)	程序默认
30	无支撑长度系数(次)	程序默认
31	有效长度系数µ(主)	程序默认
32	有效长度系数μ(次)	程序默认
20	七角線 かんしてお ノールキン	迎 床 86.21

图 2 钢框架设计覆盖项

解决办法/SOLUTION

SAP2000 的净/毛面积比只对设计公式的轴力项进行折减,不对弯矩项进行折减。光伏支架的檩条为受弯构件,强度计算时轴力项为零(图 3),因此净/毛面积比对应力比计算结果无影响。

从构件本身及节点连接考虑,净/毛面积比主要是考虑连接节点处开孔导致截面损失,进而承载力降低。但是,对于檩 条这种受弯为主的构件,螺栓连接节点位置在端部,而弯矩最大位置在跨中且跨中截面无削弱,即节点开孔并不会影响构件 的承载力。

综上所述:对于檩条这种受弯构件,其轴力项为零,净/毛面积比对应力比计算结果无影响。

框架 ₪ 分计 规 范	88 Chines	se 2018		分析截面 设计截面		C130X55X15 C130X55X15	X2.02 X2.02	
组合 ǎ ID	则站/ 位置	-弯矩校核 应力比 =	//-主 轴向	抗剪次抗剪-/ + 主弯矩 + 次弯矩	比	د		
1-恒0+0.6风	1960.	0.355(C) =	0.	0.196 + 0.16	0.014	0.004		
1-恒0+0.6风	2450.	0.4(C) =	0.	0.219 + 0.182	0.	0.		
1-恒0+0.6风	2940.	0.35(C) =	0.	0.19 + 0.16	0.016	0.004		
⊈─恒0+0.6风	3430.	0.205(C) =	0.	0.11 + 0.094	0.03	0.008		
⊈—/冝0+0.6风	3920.	0.036(C) =	0.	0.022 + 0.015	0.045	0.013		
4-恒0+0.6风	4410.	0.372(C) =	0.	0.205 + 0.167	0.06	0.017		
4-恒0+0.6风	IStress Check Information (Chinese 2018) D 88 ·规范 Chinese 2018 ·规范 Chinese 2018 ····································							
修改/显示覆盖项	〔	显示选择		面积比只对轴7	顶强	度进行护 ^{显示}	<mark>1)成</mark> 完整细节	
復盖り			間江生		巴珀		表颈语 样式表:默认	

图 3 檩条计算信息

编写:郑翔

核心筒地下部分整体位移角提取

本案例介绍两种方式,提取隔震模型下沉剪力墙筒体整体的层间位移角。

ETABS v19.1.0

🛔 模型简介/MODEL

该模型为框架-核心筒高层隔震工程,因控制支座拉应力不超过 1Mp 的需要,采用"局部地下室下沉隔震"方案。

²问题描述/PROBLEM

原模型标高±0.00m 以下的结构,分多层建立,各层高不一样,如下图所示。大震弹塑性时程工况下,想要将标高± 0.00m~-13.2m 范围内墙视为一层,如何统计其核心筒剪力墙地下部分整体的层间位移角?

原始模型层高数据

解决办法 (1) /SOLUTION

想要提取各部分核心筒剪力墙时程工况下的层间位移角(位移角=上下节点的位移差/层高),可以将各部分核心筒分别指 定到不同的塔,塔的层高根据需求来定义,直接提取各塔的结果。具体操作步骤如下:

- 1. 点击菜单栏【选项】>【多塔开关】,打开多塔。
- 2. 窗口空白处右键,点击【添加/修改轴网】,添加塔 T2、T3、T4,给 T2~T4 指定同样的楼层数据,程序内部计算位移 角时,将会用到塔内层高的数值。选中 A 部分的对象,将其指定到 T2 内,选中 B 部分的对象,将其指定到 T3 内, 选中 C 部分的对象,将其指定到 T4 内。注意,下图中 Story2 的层高覆盖了核心筒的地下部分,Story2 的层间位移 角正是所需要的结果。

3. 通过显示表格,提取 Story Drifts 显示各塔的层间位移角,如下图左侧所示,如果需要查看整个时程的位移角,可以选择逐步输出,如下图右侧所示。

tory2 tory2 tory2 tory2 tory2 tory2 tory2 tory2 tory2 tory1 tory1 tory1 tory1 tory1 tory2 tory2 tory2 tory2 tory2 tory2	Output Case R1X R1X R1X R1X R1X R1X R1X R1X R1X R1X	Case Type NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist	Step Type Max Max Min Min Max Max Min Min	Direction X Y X Y X Y X X X	Drift 9E-06 1.9E-05 9E-06 1.9E-05 0.000338 0.000293 0.000349	Drift/ 1/108011 1/52314 1/107187 1/52859 1/2961 1/3416	Label 27 25 27 25 13 15	Coad Patients (in Coad Patients (in
Story2 Story2 Story2 Story2 Story1 Story1 Story1 Story2 Story2 Story2 Story2	R1X R1X R1X R1X R1X R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist	Max Max Min Max Max Max Min Min	X Y X Y X Y X	9E-06 1.9E-05 9E-06 1.9E-05 0.000338 0.000293 0.000349	1/108011 1/52314 1/107187 1/52859 1/2961 1/3416	27 25 27 25 13 15	
-Story2 -Story2 -Story2 -Story1 -Story1 -Story1 -Story1 -Story2 -Story2 -Story2 -Story2	R1X R1X R1X R1X R1X R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist	Max Min Max Max Max Min Min	Y X Y X Y X	1.9E-05 9E-06 1.9E-05 0.000338 0.000293 0.000349	1/52314 1/107187 1/52859 1/2961 1/3416	25 27 25 13 15	Image: System Data 4 of 9 Selecter Image: System Data 4 of 9 Selecter Image: System Data Load Cases (Ref Image: System Data Connectivity Data
-Story2 -Story2 -Story1 -Story1 -Story1 -Story1 -Story2 -Story2 -Story2	R1X R1X R1X R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist	Min Min Max Max Min Min	X Y X Y X	9E-06 1.9E-05 0.000338 0.000293 0.000349	1/107187 1/52859 1/2961 1/3416	27 25 13 15	B □ Load Pattern Definitions Load Cases (Ret B □ Other Definitions Select Loa B □ Load Case Definitions Select Loa B □ Connectivity Data 1 of 5 Selected
-Story2 -Story1 -Story1 -Story1 -Story1 -Story2 -Story2 -Story2	R1X R1X R1X R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist NonModHist NonModHist	Min Max Max Min Min	Y X Y X	1.9E-05 0.000338 0.000293 0.000349	1/52859 1/2961 1/3416	25 13 15	Image: Definitions Select Loa Image: Definitions 1 of 5 Selected Image: Definitions 1 of 5 Selected
-Story1 -Story1 -Story1 -Story2 -Story2 -Story2	R1X R1X R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist NonModHist	Max Max Min Min	X Y X	0.000338	1/2961 1/3416	13 15	
-Story1 -Story1 -Story1 -Story2 -Story2 -Story2	R1X R1X R1X R1X R1X	NonModHist NonModHist NonModHist NonModHist	Max Min Min	Y X	0.000293	1/3416	15	U Connectivity Data
-Story1 -Story1 -Story2 -Story2 -Story2	R1X R1X R1X R1X	NonModHist NonModHist NonModHist	Min Min	x	0.000349			
-Story2 -Story2 -Story2 -Story2	R1X R1X R1X	NonModHist NonModHist	Min			1/2868	13	Select C
-Story2 -Story2 -Story2	R1X R1X	NonModHist		Y	0.000266	1/3760	15	Area Assignments 0 of 1 Selecter
-Story2 -Story2	R1X		Мах	х	1.3E-05	1/79483	35	Link Assignments
-Story2		NonModHist	Мах	Y	1.1E-05	1/87851	45	□ □ Options and Prefer 模态时程结果 Modify/Show
	R1X	NonModHist	Min	x	1.3E-05	1/79421	35	Image: Miscellaneous Data ○包络
I-Story2	R1X	NonModHist	Min	Y	1.1E-05	1/88474	45	ANALYSIS RESULTS
-Story1	R1X	NonModHist	Мах	Y	0.000596	1/1678	16	
-Story1	R1X	NonModHist	Min	Y	0.000573	1/1746	16	□ I Displacements ○ 终止步 I Selection 0
I-Story2	R1X	NonModHist	Max	х	2.6E-05	1/37978	3	Table: Joint Depresence
I-Story2	R1X	NonModHist	Мах	Y	3.6E-05	1/27888	22	
I-Story2	R1X	NonModHist	Min	х	2.6E-05	1/37862	3	Table: Joint Drifts
L-Story2	R1X	NonModHist	Min	Y	3.6E-05	1/28090	22	Table: Diaphragm Center Of Mass Displacements
-Story1	R1X	NonModHist	Max	x	0.000729	1/1371	3	Table: Story Drifts
-Story1	R1X	NonModHist	Мах	Y	0.000568	1/1760	22	Table: Story Max Over Avg Displacements
-Story1	R1X	NonModHist	Min	x	0.000719	1/1392	3	Table: Story Max Over Avg Drifts
-Story1	R1X	NonModHist	Min	Y	0.000601	1/1665	22	
		16 🔩 🕻	36 4 5	; 🖳 3 🕞	L 30 L 34			
-19	-27	D . (. .		_	-20	-10	-1
		41 L	-85 -44	40 🔤	29			
- 19	₽ ₇ □	16 🔩 8 (Q ₄₁ (-36 □45 -35 □44	; <mark>-</mark> 23	G 0 G 4	¹ -20	- 10	

解决办法 (2) /SOLUTION

选取剪力墙的4个角点,通过定义"广义位移"的方式输出层间位移角。以其中一个核心筒(T4)的某个角部节点为例, 演示具体操作步骤:

 点击【定义>广义位移】,点击【添加广义位移】弹出下图的窗口,类型选择"平动",填写顶部角点的唯一名 829, 系数为 1/H,然后填写底部节点的唯一名 51,系数为-1/H,表示程序计算出两个节点的位移后分别乘以各自的比例 系数,然后求和,H值为核心筒地下部分的高度。广义位移的更多信息参考链接。

€ 定	义广义位移						
					₩ #	1	
	名称		Label_3_x			》平动	〇 转动
一比	例系数 1,	/ H	1/ H				
	Joint (Unique Name)	V ¹ 1	U2	U3	R1 mm/rad	R2 mm/rad	R3 mm/rad
	829	0.075758	0	0	0	0	0
	51	-0.075758	0	0	0	0	0

2. 运行工况后,通过查看表格,可以直接提取广义的结果,即所需要的核心筒地下部分整体的位移角。

E Choose Tables for Dis	play							
Edit								
MODEL DEFINITION (0 System Data System Data Property Definitions Load Pattern Definitions Connectivity Data Joint Assignments Frame Assignments Link Assignments Link Assignments Options and Prefere Misclemence Data	of 117 table ions ns Eile Edit Unts: As Net Filter: None	placement Formated	ted) nts - Generalize at-Filter-Sort	d Select Optio	ons	_	Joint Displac	ements - Generalized
ANALYSIS RESULTS		Name	Output Case	Case Type	Step Type	Displ Type	Translation m	∆u/H
- Joint Output	ب ل	ibel_3_x	R1X	NonModHist	Max	Translation	-2.6E-05	×
Displacements	La	ibel_3_x	R1X	NonModHist	Min	Translation	-2.6E-05	
- Table: Joint D	Displacemen	nts						
- Table: Joint [Displacemer	nts - Abs						
Table: Joint E	Displacemen	nts - Gen						
Table: Joint D	Displacemen	nts - Gen	eralized - Abs	olute				
- Table: Joint L								

转换模型周期差异的原因

本案例主要介绍用 CiSDesignCenter 进行模型转换时,YJK 模型与 ETABS 模型周期对比误差原因之一。

使用软件/SOFTWARE
 ETABS v19.1.0

 様型简介/MODEL

该模型为一个高为 120m 的超高层框架结构。

✓ 问题描述/PROBLEM

原结构为 YJK 模型,通过结构设计软件 CiSDesignCenter 转换为 ETABS 模型,分析完毕后,两软件模型的周期误差对比超过了 5%,请问 原因出在哪?

程应用常见问题案例解析

ETABS模型

YJK模型

	Case	Mode	Period sec	Freque cyc/s	ency sec	CircFreq rad/sec	Eigenvalue rad ² /sec ²		j,	选择类别	N	
•	Modal	1	5.509		0.182	1.1405	1.3006		C	リ水平地震	リビ同地震	
	Modal	2	4.935		0.203	1.2731	1.6208		ì	选择振型		
	Modal	3	4.69		0.213	1.3397	1.7947		1	I(T=5.807)	^	
	Modal	4	1.793		0.558	3.5048	12.2834		2	2(T=5.161)		
	Modal	5	1.528		0.655	4.1126	16.9136		• 3	B(T=5.075)		
	Modal	6	1.481		0.675	4.2425	17.9992		4	4(T=1.849)		
	Modal	7	0.944		1.06	6.6591	44.344		5	5(T=1.592)		
	Modal	8	0.723		1.384	8.6931	75.5703		e	5(T=1.580)		
	Modal	9	0.702		4 405	0 0505	00.0400	1	7	7(T=0.967)		
	Modal	10	0.607		ETAE	3S YJK	误差%		ε	B(T=0.742)		
	Modal	11	0.466	T1	5.059	5.80	7 5.13			c	>	
	Modal	12	0.459		0.000				-	24亿日子	民动地民	1
	Modal	13	0.454	T2	<mark>4.935</mark>	5 <mark>5.16</mark>	1 4.96			匹挥亚小	间部按床	1
	Modal	14	0.414	T 3	1.69	5.07	5 7 58		3	全楼模型	按属性选	
	Modal	15	0.35	10	4.00	0.07	<mark>0 1.00</mark>		1	构件信息		

☑ 解决办法/SOLUTION

结构周期的计算公式为 $T = 2\pi \sqrt{\frac{m}{k}}$,周期只与结构的质量矩阵 M 和刚度矩阵 K 有关,对比了 YJK 模型与 ETABS 模型的质量,误差很小,如下图所示。

法国		模型一 E	TABS模型		模型二 YJK模型				误差(%)
饮居	恒载(t)	活载(t)	楼层(t)	质量比	恒载(t)	活载(t)	楼层(t)	质量比	楼层(t)
总计	0.0	0.0	46628.0 6	/	41032.0	5180.6	46212.6	/	0.89%

可以发现,周期误差过大,更多可能是结构刚度不同造成的,经过检查发现,YJK 的模型有勾选"考虑 P- Δ 效应",模态 分析的时候,考虑了几何刚度对结构整体刚度的折减,如下图所示。

YJKCAD-参数输入-计算控制信	記 > 二阶效应	
结构总体信息 计算控制信息 控制信息 二阶效应 分析求解参数 风荷载信息 基本参数 指定风荷载 地震信息	计算控制信息 > 二阶效应 ✓ 医皮P Δ效应 组合系数: 恒载 1 活载 迭代次数 [0, 100] 收敛误差 [0.0001, 0.2]	0.5
自定义影响系数曲线 地震作用放大系数 性能设计 性能包络设计 设计信息	 □ 考虑整体缺陷 ● 按屈曲分析模态考虑整体缺陷 对应的屈曲模态号 	1

ETABS 模型的模态分析未考虑几何非线性对结构刚度的影响。故按照下图,补充上相关设置。

修改后,周期吻合良好,如下图所示。所以,进行模型对比时,两软件模型的对应参数设置应保持一致。

	Case	Mode	Period sec	Frequency cyc/sec	CircFreq rad/sec	Eigenvalue rad ² /sec ²	选择类别
•	Modal	1	5.803	0.172	1.0827	1.1723	◎水平地震 G 竖向地震
	Modal	2	5.143	0.194	1.2217	1.4927	选择振型
	Modal	3	4.925	0.203	1.2757	1.6274	1(T=5.807)
	Modal	4	1.85	0.54	3.396	11.5326	2(T=5.161)
	Modal	5	1.564	0.639	4.0169	16.1353	3(T=5.075)
	Modal	6	1.519	0.658	4.1358	17.105	4(T=1.849)
	Modal	7	0.966	1.035	6.505	42.3145	5(T=1.592)
	Modal	8	0.733	1.365	8.5744	73.5197	6(T=1.580)
	Modal	9	0.712	1.405	8.8307	77.9815	7(T=0.967)
	Modal	10	0.618	1.617	10.1623	103.2717	8(T=0.742)
	Modal	11	0.472	2.12	13.3205	177.4364	< > > <
	Modal	12	0.465	2.153	13.526	182.9526	
	Modal	13	0.462	2.165	13.6009	184.9856	选择显示 同部被层
	Modal	14	0.415	2.41	15.1418	229.2751	全楼模型 按属性选
	Modal	15	0.356	2.81	17.6544	311.6786	构件信息

编写:杨硕

梁柱加腋节点的强度对比

工程应用常见问题案例解析

本案例主要介绍在 IDEA 中构件长度对钢节点强度校核结果的影响。

IDEA v21

▲ 模型简介/MODEL

如图 1 所示,工字钢的梁柱平面节点采用加腋和不加腋两种设计方案,二者采用完全相同的钢材牌号、构件截面、焊缝 尺寸和梁端荷载。其中,梁端和柱翼缘以及加腋板和梁柱之间采用对接焊缝,梁和柱的横向加劲板采用角焊缝。

如图 2 所示,加腋模型(左)的最大塑性应变(46.1%)和焊缝的最大承载比(110.7%)均大于非加腋模型(右)的对应 值(5.5%和 92.0%),也就是加腋节点的强度更低。请问,如何解释这种不合理的"梁柱节点加腋后,强度反而降低"的现象?

图 2 梁柱节点的校核结果对比

解决办法/SOLUTION

如图 3 所示,由于加腋节点中的梁段长度增加,理论节点处的荷载偏移至梁自由端后的弯矩也会增大,即: 61.3kN·m> 52.8kN·m。因此,加腋节点中位于梁自由端附近的板件应变必然大于非加腋节点。同理,加腋梁模型中承载力不足的焊缝也出现在梁的横向加劲板处,而非加腋梁模型中并不存在该板件。

整体来讲,由于以上两个梁柱节点在构造措施、构件长度以及梁端荷载等方面的差异,我们不能简单地认为"梁柱节点 加腋后,强度反而降低"。事实上,在加腋节点中造成强度降低的焊缝和板件在非加腋节点中根本不存在,二者不存在可比性。

图 3 梁柱节点的构件内力对比

如图 4 所示,如果将非加腋梁的长度修改为与加腋梁相同,梁自由端的弯矩也随之更新为 61.3 kN·m。此时,非加腋梁的 翼缘和腹板均存在类似于加腋梁的塑性应变超限,最大塑性应力也非常接近(46.1% vs 46.2%)。从两个模型的计算结果来看, 构件强度不足是造成校核不通过的主要原因,但加腋节点的承载力大于非加腋节点。

图 4 非加腋梁的构件内力和校核结果(修改长度后)

桥台纠偏分析结果异常

工程应用常见问题案例解析

本案例主要介绍加固排桩模拟方式有误导致的分析结果与实际情况不符的问题。

🔁 使用软件/SOFTWARE

PLAXIS 3D CE V22

人 横型简介/MODEL

模型如图 1 所示,长宽约 100×60m,土层厚度约 60m,既有桥墩包括桩基础、承台及上部荷载。台后(右侧)用高压旋 喷桩进行加固,台前用 MJS 工法加排桩进行加固。排桩腰梁上施加顶推荷载,分析荷载作用下桥台及桥墩响应。

纠偏荷载作用下,变形结果与预计的实际情况相差较大。

解决办法/SOLUTION

该模型涉及到结构单元之间的连接错误以及水平受力排桩模拟方法的错误。

工程应用常见问题案例解析

如图 2 所示,一排 Embedded 桩单元用来模拟排桩,梁单元用来模拟腰梁。但在 PLAXIS3D 中, Embedded 桩单元只支持 设定其某一个端点上的连接(默认为顶部),桩侧节点与另一个端点默认与周围土体通过弹簧连接(模拟桩、土之间的相互作 用,如图 3 所示)。所以梁单元横跨 Embedded 桩单元的建模是有误的。

图 3 Embedded 桩单元的连接特性

其次,水平受力为主的排桩,并不建议采用 Embedded 桩单元来处理。可采用板单元来等效处理。板单元的参数应采用等效刚度原则,将桩径为 D,间距为 t 的排桩等效为长度为 D+t 的连续墙,计算等效后的墙厚 h 作为板单元的厚度输入值。用板单元模拟排桩,也很好地处理了与冠梁、腰梁(梁单元)之间的连接问题。

调整后的模型如图 4 所示。

图 4 调整后的几何模型

编写: 郭晓通

真空预压分析中不正确的潜水位结果

本案例主要展示真空预压分析模型中潜水位结果异常的解决办法。

模型长 50m, 土层深度 30m, 模型右侧设置 10 排塑料排水板进行真空预压法的软基处理分析, 塑料排水板间距为 1.2m, 吸力值为 80kpa。

图1 几何模型示意图

✓ 问题描述/PROBLEM

真空固结 10 天后,得到的模型潜水位分布如图 2 所示,排水线周围出现了异常的水位线。

图 2 水位线分布图

对于水位线形状的问题,我们可以通过查看饱和度/孔隙水压力的分布来进行结果的检查。

图 3 饱和度分布图

如图 3 所示,每排排水线周围均出现了小范围的非饱和区,饱和度约百分之 20 左右。

土体内部非饱和区的饱和度-基质吸力关系主要受土体的非饱和土-水特征曲线控制。在 PLAXIS 中,土-水特征曲线可以在 土层参数中的地下水选项卡下去定义。如图 4,模型在非饱和区设置上采用了默认的 V-G 模型以及标准数据库中的"粗糙"类 别定义了土-水特征曲线。

图 4 非饱和模型及土-水特征曲线的定义

由于 PLAXIS 不支持定义气压/吸力,所以在真空预压分析过程中我们事实上在用水压/吸力去等效模拟气压/吸力。 为了避免非饱和基质吸力对真空预压过程的影响,建议使用完全的饱和模型来进行分析。

属	性	单位	值	
	模型			
	分类类型		用户定义	•
	SWCC 拟合方法		饱和的	•
	渗透性拟合方法		饱和的	*

图 5 非饱和模型及土-水特征曲线的定义

更换土层非饱和模型后的土体沉降云图及潜水位分布图如图 6 所示。

图 6 非饱和模型及土-水特征曲线的定义

编写: 郭晓通

57

地基处理及围堤施工过程分析计算报错

本案例主要展示某地基处理及围堤施工过程分析模型中出现的"Picos 求解器求解错误"问题的解决办法。

模型长宽均约 200×10m,模型右侧采用 DCM 工法桩进行软土的处理,随后施工右侧围堤。模型左侧采用碎石桩的处理 方法,随后进行上部堆载。

在围堤施工的分析阶段中,提示"Picos 求解器:解法有误,收敛缓慢"。

该错误提示首先考虑是否由网格质量差引起。如图 3 所示,查看网格质量,发现红色三角形的位置存在畸形网格单元, 尤其在围堤的左侧表面位置处网格质量极差。

考虑到模型并不复杂,畸形的网格单元非常可能是由几何模型的建模误差引起的。切换到网格模式,输入 checkgeometry 命令,查询到模型中有多组相邻几何对象(如图 4)。

checkgeometr	Y 英国市洲在松本、A spacecessors		
- 正住取不距离 - 找到成对的相	氾围内进行位置: 1.53161646/55// 邹几何对象: 33	/235	
1.	BoreholeVolume 1 1	Surface 2 1	4.3702933355094234E-5
2.	BoreholeVolume 1 2	Surface 2 1	4.370293334554631E-5
3.	BoreholeVolume 1 3	Surface 2 1	4.3702933335998394E-5
4.	BoreholeVolume 1 4	Polygon 1 1	0.2000000000000285
5.	BoreholeVolume 1 5	Surface 2 1	4.370293332045527E-5
6.	BoreholeVolume 1 6	Volume 1 1	4.3702933320233229E-5
7.	BoreholeVolume 1 7	Volume 1 1	4.3702933320233229E-5
8.	BoreholeVolume 1 8	Volume 1 1	4.3702933320233229E-5
9.	BoreholeVolume 1 Volume 5 1	Surface 2 1	0.24486454956430522
10.	BoreholeVolume 1 Volume 6 1	Surface 2 1	4.3702933353539917E-5
11.	BoreholeVolume 1 Volume 6 2	Surface 2 1	4.3702933343992E-5
12.	BoreholeVolume 1 Volume 6 3	Surface 2 1	4.3702933334444083E-5
13.	BoreholeVolume_1_Volume_6_4	Surface_2_1	4.370293336308784E-5
14.	BoreholeVolume 2 4	Polygon 1 1	0.200000000000285
15.	BoreholeVolume_3_8	Polygon_1_8	0.200000000000285
16.	BoreholeVolume_3_Volume_5_1	BoreholeVolum	e_4_1 0.4600000000000083
17.	Polygon_1_2 Volume_1_1	4.37029333202	233229E-5
18.	Polygon_1_3 Volume_1_1	4.37029333202	33229E-5
19.	Polygon_1_4 Volume_1_1	4.37029333202	33229E-5
20.	Polygon_1_5 Volume_1_1	4.37029333202	33229E-5
21.	Polygon_1_6 Volume_1_1	4.37029333202	33229E-5
22.	Polygon_1_7 Volume_1_1	4.37029333202	33229E-5
23.	Polygon_2_1 Surface_2_1	4.37029333439	92E-5
24.	Polygon_3_1 Surface_2_1	4.37029333535	39917E-5
25.	Polygon_4_Surface_2_1	Polygon_5_1	0.32920205180015379
26.	Polygon_5_Polygon_8_1	Surface_2_1	0.24486454956430522
27.	Polygon_6_1 Surface_2_1	4.37029333344	144083E-5
28.	Polygon_7_1 Surface_2_1	4.37029333630	8784E-5
29.	Polygon_8_1 Surface_2_1	0.24486454956	430522
30.	Polygon_8_3 BoreholeVolur	ne_4_1	0.460000000000083
31.	Volume_1_Volume_4_1	Polygon_5_1	0.32920205180015379
32.	Volume_5_Volume_7_1	Surface_2_1	0.24486454956430522
33. Hàng 1 de àgus	Volume_7_1 Surface_2_1	0.00486474197	32621606
友现小内部距	图:8		
1.	Polygon_4_Surface_2_1	0.00/8/42243/	72371021
2.	Volume_1_Volume_4_1	0.01561926126	7602269
3.	Volume_4_1 0.32920205180	0015379	
4.	Borenoievolume_1_volume_6_4	0.20000000000	000285
5.	Borenoievolume_2_volume_6_4	0.20000000000	0000285
b.	Borenoievolume_3_volume_6_4	0.2000000000	0000285
/.	Borenoievolume_3_8	0.46000000000	0000083
0.	BOLEHOTEVOTUNE_4_1	0.2000000000000	000200
	图 4	几何模型检查结	果

在众多相邻对象中,Volume_1_Volume_4_1 就是围堤左侧表面位置处的体对象,该体对象是由 Volume_1 和 Volume_4_1 两个体对象间相互切割而出现的,即由于建模误差,Volume_1 和 Volume_4_1 并没有贴合在一起。

图 5 几何模型错误的位置

该模型的调整方式为:先分解并删除掉 Volume_1 和 Volume_4_1 两个既有的体对象,通过做"相交与重新聚类"运算处理面对象之间的相交问题后,再将面拉伸回体对象。

编写: 郭晓通 **58**

围堰降水模拟中的渗流计算设置问题

本案例主要展示围堰内部降水分析的渗流边界条件设置方法。

如图 1 所示,模型长 400m,土层高度约 30m,为一围堰的施工分析模型。整体的施工顺序包括:淤泥层的开挖、围堰的施工、围堰底部止水帷幕的施工、围堰内部的降水。

"地下水渗流分析未达到最终状态"即地下水分析不收敛。对于该错误提示,通用的解决办法是:考虑增加渗流控制参数中的最大步数;尝试检查模型中的渗流边界条件设置;尝试将模型进行网格加密;避免出现渗透系数差异较大的土层及简化复杂的几何形状等。

对于该模型,我们首先检查其地下水的渗流边界条件。如图 3 所示,用户绘制了一条降水过后的水位线,将该水位作为 全局水位来模拟进行降水后的地下水渗流边界条件。

图 3 地下水渗流分析未达到极限状态提示

这种方式是有误的。水位线定义地下水渗流边界条件的机制是:水位线可以定义与模型轮廓相交位置处的水头边界。利用这种机制,在二维基坑降水分析中,我们可以用绘制水位的方式快捷定义降水。如图4所示。

图 4 2D 基坑降水的常用设置方式

但在该围堰模型中,水位线并未能实现坑内低水头边界的定义。用户可以使用水位线来定义围堰外部的水头边界,然后 在围堰内部,手动创建 h=-9m 的常水头边界条件来模拟围堰内部降水产生的渗流场,如图 5 所示。

图 5 修正后的渗流边界条件设置方式

图 6 修正后模型内部的孔压分布

编写: 郭晓通

调整后,计算所得模型内部的孔压分布如图 6 所示。

新增<mark>及改进功能</mark>

PLAXIS 2D V22 新增及改进功能

兼容性说明

• 由于材料数据库和单位体系发生重大变化, PLAXIS 3D CONNECT Edition 22 将与版本 21 一 起安装,而不是覆盖版本。使用 PLAXIS 3D V22 打开 PLAXIS 3D V21 项目时,项目将自动保存为 带有_converted 后缀的转换副本,并需要重新计 算。当使用非国际单位制(SI)单位时,网格也需 要重新生成。

新的岩体本构模型: N2PC-MCT

•为了改进对于岩石蠕变问题的分析,V22版本在 N2PC-Salt本构模型中添加了莫尔-库仑破坏准则。 该模型被添加为用户自定义本构中 n2pc_salt64.dll 下的 CreepRock_N2PC_MCT。

不连续单元

• V22 版本中加入了新的结构单元类型非连续单元, 用于模拟不连续的缝隙、节理、断层等对象。

材料数据库的数据结构调整

 · 对材料数据库中材料对象的数据结构进行了重大 调整,从而为材料对象提供了更好的命令流支持、 侧面板警告和编辑体验。这一变化还意味着: 材料数据库的修改可能会对旧的命令或 Python 脚本不兼容 旧全局材质数据库文件(*.matbd) 不再兼容 PLAXIS 后处理程序只能读取当前版本 中计算并保存的 PLAXIS 文件 PLAXIS SoilTest* 不支持*.vlc 格式的文件 PLAXIS 2D Classic 转 换器与此版本不兼容

改进了 DXF 和 STEP 文件的导入和导出

• V22 版本改进了导入和导出为*.DXF 和*.STEP 文 件时对于项目单位的处理。 增加了对导出期间编 写自定义项目单位的支持。"导入"窗口现在提 供了一个侧面板,其中包含警告和对导入日志的访 问。

单位系统的改进

•通过一个统一的单位制改进了对项目单位的处理, 在项目单位发生变化后 PLAXIS 会保持模型物理尺 寸的一致性。

升级的 Python 环境

• 将 Python 环境升级为 Python 3.8.x,用于修复 OpenSSL 等库中的安全漏洞。

点击了解更多功能特性

PLAXIS 3D V22 新增及改进功能

兼容性说明

 由于材料数据库和单位体系发生重大变化, PLAXIS 3D CONNECT Edition 22 将与版本 21 一 起安装,而不是覆盖版本。使用 PLAXIS 3D V22 打开 PLAXIS 3D V21 项目时,项目将自动保存为 带有_converted 后缀的转换副本,并需要重新计 算。当使用非国际单位制(SI)单位时,网格也需 要重新生成。

新的岩体本构模型: N2PC-MCT

由于材料数据库和单位体系发生重大变化, PLAXIS 3D CONNECT Edition 22 将与版本 21 一 起安装,而不是覆盖版本。使用 PLAXIS 3D V22 打开 PLAXIS 3D V21 项目时,项目将自动保存为 带有_converted 后缀的转换副本,并需要重新计 算。当使用非国际单位制(SI)单位时,网格也需 要重新生成。

材料数据库的数据结构调整

· 对材料数据库中材料对象的数据结构进行了重大调整,从而为材料对象提供了更好的命令流支持、侧面板警告和编辑体验。这一变化还意味着:材料数据库的修改可能会对旧的命令或 Python 脚本不兼容 旧全局材质数据库文件(*.matbd)不再兼容PLAXIS 后处理程序只能读取当前版本中计算并保存的 PLAXIS 文件 PLAXIS SoilTest*不支持*.vlc格式的文件

改进了 DXF 和 STEP 文件的导入和导出

 • V22 版本改进了导入和导出为*.DXF 和*.STEP 文件时对于项目单位的处理。增加了对导出期间 编写自定义项目单位的支持。"导入"窗口现在 提供了一个侧面板,其中包含警告和对导入日志 的访问。

多段曲线 (polycurve) 对象的局部轴

• 支持手动定义多段曲线的局部轴。

技术预览: 支持导入三角形面组成的地表、 地层曲面

•22版本现在可以导入*.OBJ和*.STL格式的由三 角形面组成的地表与地层曲面。

技术预览:土-结构相互作用(SSI)

•现在可以通过超级单元导入、导出反作用力与位移, 配合结构分析软件包处理土-结构的相互作用。

升级的 Python 环境

将 Python 环境升级为 Python 3.8.x,用于修复
 OpenSSL 等库中的安全漏洞。

TAPFIRE BUILDING ANALYSIS AND DESIGN

新<mark>增</mark>及改进功能

ETABS V20.1.0 新增及改进功能

结构模型

- •新增支承线功能,以便于更快地创建设计板带、钢束和板块。可以 在屏幕窗口中直接绘制和编辑支承线,也可以沿轴网线自动生成。
- 板块(Slab panels)是一种新型的建模对象,它可以基于轴网或支 承线自动生成,也可以由用户绘制。它们依附在楼板体系,借助板 块可以施加用于分析活荷载不利布置的活荷载分布样式,也可用于 提取中间板块位移和土压力的数据报告。
- 现在可以沿板对象内的线指定弯矩和剪力释放。之前只能沿板对象的边界指定释放。
- •新增基于澳大利亚规范 AS3600-2018 的混凝土时间相关属性,包括 徐变、收缩和随龄期变化的刚度。
- •现在可以将比例因子应用于材料的时间相关属性——徐变、收缩和 刚度——允许对特殊情况下的行为进行更多控制。

加载功能

- 样式活荷载现在可以作为一种荷载类型使用,允许手动将活荷载指 定到结构的不同区域,并在荷载组合中自动变化以产生最大响应。
- •新增基于澳大利亚规范 AS/NZS 1170.2:2021 的自动风荷载
- •现在可以将温度梯度荷载指定给框架和壳,用来模拟温度沿截面厚度的变化,这往往会引起弯曲变形。

分析功能

- 新的阶段施工操作可用于改变框架和壳的刚度修正以及框架的端部 释放。利用属性修正或端部释放的命名集,这些操作可以应用于单 个对象或对象组。
- 对于具有大量无阻尼线性连接单元的非线性模态时程分析(FNA), ETABS的计算速度显著提升,尤其适用于弹性地基支承的网格密集 的基础筏板
- •分析引擎已针对较新的 AMD CPU 进行了优化。

设计功能

.....

• 完善了楼板后张预应力(PT)设计的报告,可以通过表格和图形显示设计板带在每个测站的抗弯承载力,以及通过表格显示由后张预应力(PT)引起的沿板带的预压力。

点击了解更多功能特性

新增及改进功能

CSiBridge 24.0.0 新增及改进功能

建模功能

- •可直接将任意一个主梁或是桥梁布局线设为参考线通过参数化的方 式布置预应力钢筋。
- 新增混凝土预制 I 型梁桥和 T 型梁桥在双排支座处合拢浇筑段的模 拟方法该方法可用于模拟活荷载连续的上部结构或与下部结构浇筑 成整体的上部结构。

桥梁设计与评估

- •新增 AASHTO LRFD 2020 桥梁上部结构设计规范该新规范也可以 用于桥梁承载能力的评估。
- 新增 I 型钢梁和 U 型钢梁腹板纵向加劲肋的模拟方法。可以逐个对 钢梁指定腹板纵向加劲肋,并在建模、分析、设计及评估时考虑其 刚度。

设计功能

•基于欧标1992-1-1:2004的混凝土壳配筋功能得到进一步增强,包括 新增设计首选项和国家附录,迭代计算最优配筋面积,适用于变厚 度壳的配筋计算以及输出配筋细节的数据库表格。

分析功能

- •新增基于澳大利亚规范 AS3600-2018 的混凝土时变属性如: 混凝土 的徐变和收缩、随混凝土龄期变化的材料刚度。
- 针对槽形截面和通用截面,新增关于剪切中心的控制选项。默认情况下,SAP2000考虑剪切中心偏移造成的主弯矩、剪力 V2 和扭矩之间的耦合效应。当然,用户也可以根据需要关闭该选项。

中国设计规范相关的功能改进

- 调整钢束有效预应力的计算方法,调整后程序将直接读取每个钢束 的有效预应力参与计算,其计算结果将更加精确。
- 依据 JTG 3362-2018 规范修正了抗剪切验算的公式,依据(5.2.9-2 条)调整了 fcuk、fpv、fsv 的取值,并对数据结果列表了做了相应 的修正。
- 依据 JTG 3662-2018 规范修正了扭转验算方法,用户可以选择按纯 扭或是扭转剪切分别进行验,依据(5.5.1-1条)修正了箱形截面有 效壁厚折减系数 β_α 和核心区混凝土面积 A_cor 的计算公式,并 对数据结果列表了做了相应的修正。

STRUCTURAL ANALYSIS AND DESIGN

SAP2000 24.0.0 新增及改进功能

新增及改进功能

设计功能

- •新增基于加拿大规范 CSA A23.3-19 的混凝土结构设计功能,新增基于加拿大规范 CSA S16-19 的钢结构设计功能
- •基于欧标1992-1-1:2004的混凝土壳配筋功能得到进一步增强,包括 新增设计首选项和国家附录,迭代计算最优配筋面积,适用于变厚 度壳的配筋计算以及输出配筋细节的数据库表格。

分析功能

- •新增基于澳大利亚规范 AS3600-2018 的混凝土时变属性,如: 混凝 土的徐变和收缩、随混凝土龄期变化的材料刚度。
- 针对槽形截面和通用截面,新增关于剪切中心的控制选项。默认情况下,SAP2000考虑剪切中心偏移造成的主弯矩、剪力 V2 和扭矩之间的耦合效应。当然,用户也可以根据需要关闭该选项。

中国设计规范相关的功能改进

- •补充并改进了功能界面的汉化。
- •修改默认荷载组合中相关的分项系数,以满足《建筑与市政工程抗 震通用规范》的要求。
- 钢结构的名义水平荷载的组合系数,当有地震组合时取 0.5 (之前该 组合系数是 1.0),以满足《钢结构通用规范》的要求。
- •根据 GB50010-2010/JTG D62-2004/TB 10092-2017,完善了内置 预应力钢筋的材料属性。
- •修复了计算钢结构等效弯矩系数时识别柱上横向荷载的问题。
- 修复了钢结构设计结果提示信息的显示问题,比如规范条文编号引 用错误。该问题只影响显示,不影响设计过程。

点击了解更多功能特性

第十届中国花卉博览会(世纪馆、竹藤馆)结构 关键技术设计与研究

2022年2月24日,筑信达"达人坛"特邀华东院事业四部副总黄永强专家给大家介绍了第十届中国花卉博览会中世纪馆和竹藤馆的结构关键技术。

两个项目均使用 SAP2000 完 成建模与分析。世纪馆东西长约 280m,南北长约 115m,整体为 蝴蝶造型,由于跨度较大,采用了 间接预应力提供约束的自由曲面混 凝土薄壳结构,基于 SAP2000 对 复杂形状对象的自动有限元网格剖 分,完成结构分析。结构设计时通 过四道钢混组合张弦桁架,平衡了

壳体较大的侧推力;通过施加了预应力的环梁和洞口边梁,为壳体自由边界提供水平约束,解决了柱顶的冲切问题。世纪馆中还有两个技术难点,一是 50m 跨度的连桥,工程师巧妙地采用一榀张弦桁架的 撑点作为连桥吊点,并用 SAP2000 中的线性连接单元和 damper 单元模拟 TMD 阻尼器,解决了连桥 的舒适度问题;二是单边悬挑的旋转楼梯,采用内梯梁与中间钢柱的连接解决稳定问题,同样用 TMD 改善了舒适度问题。

竹藤馆的主体结构为钢框架支撑 + 双层索网,人行桥从馆内 蜿蜒延伸至外,具有灵动性。由于柱位条件,人行桥桥段对挑, 悬挑长度 10m,设计困难,故在悬挑段内采用 12mm 钢板扶手兼 做受力构件,钢板扶手内布置了 6 根悬臂柱,并布置了扶壁加劲 肋,解决了稳定问题。竹藤馆空间造型独特,建模也有一定的难度, 于是通过 RHINO+grasshopper 与 Swallow 联动,参数化找形, 通过二次开发接口 API 导入 SAP2000,得到结构造型。

两个项目涵盖了很多巧妙的设计与构思,让大家感受到了结构之美,表示获益匪浅。

SAFEv20中文版发布会暨楼盖体系设 计与应用技术交流会圆满落幕

SAFE 是楼板 / 基础体系设计的专业软件,是 CSI 系列的重要产品之一,常被应用于无梁楼盖、预 应力楼盖及各种复杂的楼板 / 基础设计中。由于在建模、分析、设计方面的独特优势,SAFE 可以帮助 工程师对楼盖体系进行更深入的研究。2022 年 3 月 25 日,新版 SAFE V20 正式推出。

首先由技术部李立经理介绍了 SAFE 的 产品特色和新增功能,比如活荷载不利布置、 梁板的协同分析、无梁楼盖的受力特征、双 向板的挠度及开裂分析、预应力楼板设计、 不规则楼板的抗震分析等等,给大家建立了 一个"初印象"。

接着,特邀嘉宾上海长福工程结构专项 设计事务所创始人扶长生教授和大家探讨了 现存的重力荷载作用下双向板的分析与设计 问题,包括双向板裂缝形态和主要影响因素、 中国规范的裂缝和挠度计算公式及适用范围、 美标中双向密肋楼盖的设计与分析,以一些 工程实例进行了具体展示。此外,扶总还提 出了地震作用下楼板的分析与设计问题,强 调了楼板的不规则性对抗侧力构件抗震性能 的影响,以及柱支承双向板、转换厚板的抗 震分析设计重点。

最后,由特邀嘉宾北京银泰建构预应力技术股份有限公司的副总经理高顺总工从工程实际层面提出 了楼盖设计中的若干问题。比如以某大梁大板体系 SAFE 设计案例展示了传统的梁板分析方法与梁板 协同分析方法的用钢量对比,分析了一些国内无梁楼盖垮塌事故,分享了地坪设计在国内的现状和现存 问题。

此次发布会从工程案例、规范解析等角度聚焦楼板设计问题,信息丰富,讨论气氛热烈,交流时长 持续了半个小时。通过此次发布会,广大工程师对楼板设计有了更多的思考,感受到了楼盖有限元分析 的必要性,对 SAFE 的强大功能也有了进一步的认识。

供稿: 刘慧璇

活动报道

【助力高校 协同创新】"木塔结构" 专题培训圆满落幕

适逢第十五届全国大学生结构设计竞赛开展之际,为了让更多参赛师生了解和应用国际领先的 SAP2000 软件,筑信达特组织此次"木塔结构"专题培训,以深入浅出的方式介绍了 SAP2000 软件 在木塔结构中的常见应用及操作例题讲解,通过实际操作案例帮助学生们提高软件的操作技能和使用技 巧,实现用户在短时间内正确、熟练的操作 SAP2000 软件。本次专题培训使用了腾讯会议直播以及公 众号同步直播的形式,并建立专用微信群,课后提供相关软件资料及课程回放视频。

本次培训共分为三次课程,参赛师生关注度较高,总 报名人数达到 360 余人。第一次课是以讲座的形式有幸 邀请到了中国林业科学研究院的王总为我们讲解国内外木 结构建筑的传承与发展,并以应县木塔为代表介绍其受力 特点,课程讲解过程中王总将理论与实际相结合,描述生

动,授课经验丰富,老师同学们积极响应并踊跃提出问题,课后来电咨询技术问题并在培训群里交流探讨,达到了良好的培训效果。

第二三次课主要是围绕 SAP2000 在木塔结构的应用以及木塔结构模型的建模与计算,从软件功能应用介绍到建模实操,内容丰富,利用参数化建模,重点讲解解决方案,帮助同学们在第十四届全国大学生结构设计竞赛中提供全新的思路,没有时间来参加的老师同学课后积极看视频回放进行学习,并积极交流 提问。

通过本次专题培训,让第一次接触 SAP2000 的老师同学们有了全新的认知,对 SAP2000 的关注 度有所提升,很多同学反馈从中学到了很多,老师反映希望我们以后多开展专题培训,加大与高校的校 企合作。 供稿:王晋京

如果你使用过我们的产品 如果你喜爱工程分析

或许你正困惑其中 或许你已成果丰硕

欢迎来这里发声!

这里 可以提问 也可以"炫技"

可以严肃 也可以顽皮

题材不限 风格不拘

只要与它们相关 SAP2000、ETABS、SAFE、 Perform3D、CSiBridge、PLAXIS 法法法

筑信达《技术通讯》是面向广大土木工 程师的技术刊物,内容覆盖筑信达全线产 品(CSI结构/桥梁产品、PLAXIS岩土产品 、筑信达自主开发产品)的最新动态、技 术知识。旨在帮助工程师们更好地将软件 产品应用于工程实践,同时也为工程师们 切磋数值分析技术、分享工程应用经验提供 平台!

欢迎广大工程师踊跃投稿!

稿件一经采纳,作者将有机会获赠:

- •技术专著
- •产品单机版免费限时使用权
- •高级培训免费名额

CSibridge SAP2000 ETABS SAFE PERFORM 30

CiSDesigner CiSGTCAD CiSModelCenter CiSOpenSteel CiSDesignCenter

PLAXIS

在线支持 *support.cisec.cn*

知识库 _{wiki.cisec.cn}

视频教程 *i.youku.com/bjcisec*