# 集成化的通用结构分析与设计软件 SAP2000<sup>®</sup>

## 案例教程



北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层, 100043

I

## 版权

计算机程序 SAP2000 及全部相关文档都是受专利法和版权法保护的产品。全球范围的 所有权属于 Computers and Structures, Inc.(中文版版权同属于北京筑信达工程咨询有限公 司)。如果没有 CSI 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使 用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

## 说 明

本教程将通过具体的案例,介绍如何应用 SAP2000 处理一些典型问题。"模型概况"是 对案例的简单介绍;"主要工作流程"是对常规建模过程的描述;"要点详解"是对相关一些软 件应用技术的详细说明。本教程不涉及软件操作的详细讲解,相关内容请参考 SAP2000 联 机帮助或相关使用手册。

我们将持续丰富案例种类。对于本教程的内容和需要增加的案例类型,欢迎您提出您的 意见和建议,不胜感谢!联系方式如下:

技术热线: 010-6892 4600 - 200

技术邮箱: support@cisec.cn

## 钢框架 PUSHOVER 分析案例教程

## 模型概述

如图 1 所示的钢框架,共4 层,层高 3.6 米,平面尺寸如图 2 所示。楼面恒、活荷载 均为 1.5KN/m<sup>2</sup>。抗震设防烈度 8 度,设计基本地震加速度值为 0.3g,多遇地震水平地震影 响系数最大值 0.24,特征周期 0.45s,罕遇地震水平地震影响系数最大值 1.2,特征周期 0.5s,周期折减系数 0.85,阻尼比 0.03。



图 1 钢框架三维模型



图 2 模型平面图

该结构已完成设计,设计截面如表 1 所示。本案例拟通过静力弹塑性分析了解结构在 大震作用下的性能状态。



图 3 结构构件编号

| 构件编号 | 截面尺寸            | 构件编号 | 截面尺寸            | 构件编号 | 截面尺寸            |
|------|-----------------|------|-----------------|------|-----------------|
| 1    | HN550X200X10X16 | 25   | HW350X350X10X16 | 49   | HN300X150X6.5X9 |
| 2    | HN550X200X10X16 | 26   | HW350X350X10X16 | 50   | HN300X150X6.5X9 |
| 3    | HN550X200X10X16 | 27   | HW500X500X20X25 | 51   | HN300X150X6.5X9 |
| 4    | HN550X200X10X16 | 28   | HW400X400X18X28 | 52   | HN300X150X6.5X9 |
| 5    | HN400X150X8X13  | 29   | HW350X350X10X16 | 53   | HN500X200X10X16 |
| 6    | HN400X150X8X13  | 30   | HW350X350X10X16 | 54   | HN500X200X10X16 |
| 7    | HN400X150X8X13  | 31   | HW500X500X20X25 | 55   | HN500X200X10X16 |
| 8    | HN400X150X8X13  | 32   | HW400X400X18X28 | 56   | HN500X200X10X16 |
| 9    | HN400X150X8X13  | 33   | HW350X350X10X16 | 57   | HN250X125X6X9   |
| 10   | HN400X150X8X13  | 34   | HW350X350X10X16 | 58   | HN250X125X6X9   |
| 11   | HW500X500X20X25 | 35   | HW500X500X20X25 | 59   | HN250X125X6X9   |
| 12   | HW400X400X18X28 | 36   | HW400X400X18X28 | 60   | HN250X125X6X9   |
| 13   | HW350X350X10X16 | 37   | HW350X350X10X16 | 61   | HN250X125X6X9   |
| 14   | HW350X350X10X16 | 38   | HW350X350X10X16 | 62   | HN250X125X6X9   |
| 15   | HW500X500X20X25 | 39   | HW500X500X20X25 | 63   | HN400X200X8X13  |
| 16   | HW400X400X18X28 | 40   | HW400X400X18X28 | 64   | HN400X200X8X13  |
| 17   | HW350X350X10X16 | 41   | HW350X350X10X16 | 65   | HN400X200X8X13  |
| 18   | HW350X350X10X16 | 42   | HW350X350X10X16 | 66   | HN400X200X8X13  |
| 19   | HW500X500X20X25 | 43   | HN550X200X10X16 | 67   | HN250X125X6X9   |
| 20   | HW400X400X18X28 | 44   | HN550X200X10X16 | 68   | HN250X125X6X9   |
| 21   | HW350X350X10X16 | 45   | HN550X200X10X16 | 69   | HN250X125X6X9   |
| 22   | HW350X350X10X16 | 46   | HN550X200X10X16 | 70   | HN250X125X6X9   |
| 23   | HW500X500X20X25 | 47   | HN300X150X6.5X9 | 71   | HN250X125X6X9   |
| 24   | HW400X400X18X28 | 48   | HN300X150X6.5X9 | 72   | HN250X125X6X9   |

表 1 构件截面(Q235)

## 操作步骤

## 1、材料属性修正

由于程序计算塑性铰属性时需要使用有效屈服强度,故需要将默认材料属性中的有效屈服强度修改为 235N/mm<sup>2</sup>,其具体操作为**定义>材料属性>修改/显示材料**,在弹出的如下图的对话框中将有效屈服强度修改为 235,注意单位为 N, mm, C。

SAP2000 案例教程: 钢框架 PUSHOVER 分析

| 一般数据       |                      |
|------------|----------------------|
| 材料名称和显示颜色  | Q235                 |
| 材料类型       | Steel                |
| 材料注释       | 修改/显示注释              |
| 重里和质里      | 单位                   |
| 重量密度       | 7.700E-05 N, mm, C 💌 |
| 质量密度       | 7.850E-09            |
| 各项同性属性数据   |                      |
| 弹性模量,E     | 210000.              |
| 泊松比,∪      | 0.3                  |
| 线膨胀系数,A    | 1.170E-05            |
| 剪切模里,G     | 80769.23             |
| 钢材料其他属性    |                      |
| 屈服强度,fyk   | 235.                 |
| 极限强度,fuk   | 390.                 |
| 有效屈服强度,fye | 260.                 |
| 有效抗拉强度,fue | 430.                 |
|            |                      |
| 切换到高级属性显示  |                      |

图 4 材料属性数据对话框

## 2、广义位移定义

为方便分析后位移结果的统计,可先定义广义位移。在定义广义位移时,可先对结构节 点重新编号,后使用交互式数据库编辑功能快速定义所有的广义位移。

#### 2.1 节点重新编号



图 5 模型现有的节点编号

点击编辑>修改标签,在弹出的如图 6 对话框中的项类型选择 Element Labels-Joint,即 节点单元编号;在下一号区域内输入重新编号的起始编号,一般情况下,此数字要大于现有 编号的值,避免在编号过程中编号错乱,此例中,共有节点 40 个,可将起始编号定为 100。 点击编辑>自动重标签>列表中全部,点击确定,完成重编号工作。重新编号后的节点编号 如错误!未找到引用源。所示。

|                                                                         | B(V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                 |    |          |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|----|----------|
| 达律命名列                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                 |    | _        |
| 项类型                                                                     | Element L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | abels - J                                 | oint                                                            |    | •        |
| □ 仅列出                                                                   | 出洗择项名称                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                                                 |    |          |
|                                                                         | - **1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                                                 |    |          |
| 目切里新和                                                                   | 不会控制                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                                 | _  |          |
| 前缀                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 第                                         | 一重标签顺序                                                          | ΙZ | •        |
| 下一号                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 第                                         | 二重标签顺序                                                          | Y  | -        |
| 僧里                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>                                | 小位数                                                             | 0  | _        |
|                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                 | ,  |          |
| わわりまき                                                                   | h Element Labels Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1. A. |                                                                 |    |          |
| 「石朴列表」                                                                  | J Element Labels - Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | int                                       |                                                                 |    |          |
| - 名称列表/                                                                 | Current Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | int                                       | New Nar                                                         | ne |          |
| 名称列表/                                                                   | Current Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | int                                       | New Nar<br>1                                                    | ne | •        |
| 1 2                                                                     | Current Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | New Nar<br>1<br>2                                               | ne | •        |
| 当前列表)<br>1<br>2<br>3                                                    | Current Name 1 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | New Nar<br>1<br>2<br>3                                          | ne | <b>^</b> |
| 当称列表/<br>1<br>2<br>3<br>4                                               | Current Name 1 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | New Nar<br>1<br>2<br>3<br>4                                     | ne | •        |
| 日本<br>1<br>2<br>3<br>4<br>5                                             | Current Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | New Nai<br>1<br>2<br>3<br>4<br>5                                | ne | <b>^</b> |
| 日本<br>1<br>2<br>3<br>4<br>5<br>6                                        | Current Name 1 2 3 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6                           | ne |          |
| 名称列成/<br>1<br>2<br>3<br>4<br>5<br>6<br>7                                | Current Name 1 2 3 4 5 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6<br>7                      | ne |          |
| 名称列次/<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                           | Current Name 1 2 3 4 5 6 7 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8            | ne |          |
| 名林列次)<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9                 | Current Name 1 2 3 4 5 6 7 8 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9       | ne |          |
| 名林 <b>刘</b> 成)<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10       | Current Name 1 2 3 4 5 6 7 8 9 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>9  | ne |          |
| 名林沙太)<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10           | Current Name Curre |                                           | New Nat<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>9<br>10 | ne |          |
| 名林沙太)<br>1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>7<br>8<br>9<br>9<br>10 | 5 Clement Labels - 30<br>Current Name<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | New Na<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>7<br>8<br>9<br>10  | ne |          |

图 6 交互式节点编号修改对话框



图 7 重编号后的节点编号

#### 2.2 广义位移定义

点击定义>广义位移>添加新广义位移,在广义位移定义对话框中的广义位移名称中输入 STORY1\_1,类型选择 平移,在节点栏输入 100,U1 栏输入-1 后点击添加,再次在节点 栏输入 108,U1 栏输入 1,点击添加,点击确定,完成广义位移 STORY1\_1 的定义。在分 析完成后,程序可直接输出此广义位移的值,此广义位移代表的含义为,节点 108 和节点 100 在 U1 方向的位移差(在默认情况下,节点的 U1 方向即为系统的 X 方向)。



图 8 定义广义位移



图 9 广义位移定义对话框

为快速定义所有的广义位移,下面将使用交互式数据库编辑功能定义广义位移。点击编 辑>交互式数据库编辑,在弹出的对话框中选择广义位移>Table: Generalized Displacement Definitions1-Translational,点击确定。在弹出的对话框中点击到 EXCEL 按钮,则弹出 EXCEL 数据,根据 EXCEL 中定义广义位移的格式,填写剩余所有的广义位移如图 12 所示,填写 完成后,点击图 13 对话框中的从 EXCEL 按钮,程序将会把 EXCEL 中的数据导入到程序 中,再点击图 14 中的应用到模型按钮,点击确定按钮,至此,所用的广义位移定义完成。 可在定义>广义位移中查看广义位移的细节。

| 編集(5)               ● 個 建型定义 (1 of 76 tables selected)             ● 目 建位定义             ● □ 目 性空义             ● □ 目 性空             ● □ 目 世 回 目 世 回 目 世 世 回 目 世 世 回 目 世 世 回 目 世 世 回 目 世 世 回 目 世 世 回 目 世 世 回 世 回                                                                                                                                                                                                                                                                                                                          | 选择表进行交互式编辑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ● 図 視望空义 (1 of 76 tables selected)       荷鉄現式倶式定义)         ● 図 視空文       ● 図 技空义         ● □ 教授支援       ● 図 技定义         ● □ 教授支援       ● 図 技巧之义         ● □ 教授支援       ● 図 技巧之义         ● □ 教授支援       ● 図 技巧之义         ● □ 教授支援       ● 図 大倍之义         ● □ 教授支援       ● □ 分子(立法)         ● □ 教授支援       ● □ 公子(立法)         ● □ 教授       ● □ 小(立法)         ● □ 公子(立法)       ● □ ○ 小(古法)         ● □ 教授       ● □ ○ 小(古法)         ● □ 公子(立法)       ● □ ○ 小(古法)         ● □ 当会(立法)       ● □ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ | 编辑(E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 占未确定な互编辑选择来                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ● 図 板型定义 (1 of 76 tables selected)         ● 国 板型定义         ● 国 板型定义         ● 国 其後定义         ● 国 其後定义         ● 国 其後定义         ● 国 其後定         ● 国 其後定义         ● 国 其後定义         ● 国 其後定         ● 国 其後定义         ● 国 其後定         ● 国 其後定         ● 国 其後定         ● 国 美術定         ● 国 董士         ● 国 董士 | 荷號模式(模式定义)       這择荷號模式       2 of 2 Selected       這项       ① ⑦       ① ⑦       ① ⑦       ① ⑦       ① ⑦       ② ⑦       ⑦       ②       ⑦       ②       ②       ⑦       ③       ⑦       ⑦       ○       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ②       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑧       ⑦       ⑧       ⑧       ②       ○       ⑦       ○       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑦       ⑧ </th |
| AN MARKAN AND AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 点击确定交互编辑选择表                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

图 10 交互式数据库编辑对话框

#### SAP2000 案例教程:钢框架 PUSHOVER 分析

| 3 | 五式     | 数据库编辑-(           | Generalized      | l Displaceme   | nt Definiti | ons 1 - Tra | nslational    |                  |                 |   |                  |
|---|--------|-------------------|------------------|----------------|-------------|-------------|---------------|------------------|-----------------|---|------------------|
| ſ | 文件(    | F) Excel 编        | 辑(E) 视图          | 图(V) 选项(C      | ))          |             |               |                  |                 |   |                  |
|   |        |                   |                  |                |             | Generalize  | d Displacemer | nt Definitions 1 | - Translational | • | 复制               |
| L |        | GenDispl          | Joint            | U1SF           | U2SF        | U3SF        | R1SF          | R2SF             | R3SF            |   | 粘贴               |
| L |        | Text              | Text             | Unitless       | Unitless    | Unitless    | m/rad         | m/rad            | m/rad           |   | 插入粘贴             |
|   | 1      | STORY1_1          | 100              | -1.000000      | 0.000000    | 0.000000    | 0.000000      | 0.000000         | 0.00000         |   |                  |
| L | 2      | STORY1_1          | 108              | 1.000000       | 0.000000    | 0.000000    | 0.000000      | 0.000000         | 0.000000        |   |                  |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 附加空行             |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 查找 ▲<br>         |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 到 Excel          |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 从 Excel          |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 取消 Excel         |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 高级选项             |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 取消上一步操作<br>应用到模型 |
|   |        |                   |                  |                |             |             |               |                  |                 |   | 完成               |
| L | Only [ | )isplay Import Lo | og if Error or V | Varning Occurs | :           |             |               |                  | 覆盖模式关闭          |   |                  |

图 11 交互式数据库编辑对话框

| A        | В        | С         | D         | E         | F         | G        | H     |
|----------|----------|-----------|-----------|-----------|-----------|----------|-------|
| TABLE: 0 | eneraliz | ed Displa | icement D | efinition | ns 1 - Tr | anslatio | nal   |
| GenDispl | Joint    | U1SF      | U2SF      | U3SF      | R1SF      | R2SF     | R3SF  |
| Text     | Text     | Unitless  | Unitless  | Unitless  | m/rad     | m/rad    | m/rad |
| STORY3_6 | 121      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY3_6 | 129      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY3_7 | 122      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY3_7 | 130      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY3_8 | 123      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY3_8 | 131      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_1 | 124      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_1 | 132      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_2 | 125      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_2 | 133      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_3 | 126      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_3 | 134      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_4 | 127      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_4 | 135      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_5 | 128      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_5 | 136      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_6 | 129      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_6 | 137      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_7 | 130      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_7 | 138      | 1         | 0         | 0         | 0         | 0        | 0     |
| STORY4_8 | 131      | -1        | 0         | 0         | 0         | 0        | 0     |
| STORY4_8 | 139      | 1         | 0         | 0         | 0         | 0        | 0     |

图 12 EXCEL 数据

## 能信达

| 交 | 交互式数据库编辑- Generalized Displacement Definitions 1 - Translational |                  |                 |                |          |            |                |                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|------------------------------------------------------------------|------------------|-----------------|----------------|----------|------------|----------------|------------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 之件(                                                              | F) Excel 编       | 辑(E) 视图         | 图(V) 选项(C      | ))       |            |                |                  |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                                                                  |                  |                 |                |          | Generalize | ed Displacemer | nt Definitions 1 | - Translational | -       | 复制                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                  | GenDispl         | Joint           | U1SF           | U2SF     | U3SF       | R1SF           | R2SF             | R3SF            | <b></b> | 粘贴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                  | Text             | Text            | Unitless       | Unitless | Unitless   | m/rad          | m/rad            | m/rad           |         | 插入粘贴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 1                                                                | STORY1_1         | 100             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | R#Hn#LAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 2                                                                | STORY1_1         | 108             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 3                                                                | STORY1_2         | 101             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 4                                                                | STORY1_2         | 109             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 附加空行                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 5                                                                | STORY1_3         | 102             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 6                                                                | STORY1_3         | 110             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 7                                                                | STORY1_4         | 103             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 8                                                                | STORY1_4         | 111             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | The former of th |
|   | 9                                                                | STORY1_5         | 104             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | EI Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 10                                                               | STORY1_5         | 112             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 从 Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 11                                                               | STORY1_6         | 105             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 取消 Excel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 12                                                               | STORY1_6         | 113             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 宣犯进而                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 13                                                               | STORY1_7         | 106             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 14                                                               | STORY1_7         | 114             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 取消上一步操作                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | 15                                                               | STORY1_8         | 107             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 应用到模型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 16                                                               | STORY1_8         | 115             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         | 宁成                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | 17                                                               | STORY2_1         | 108             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 18                                                               | STORY2_1         | 116             | 1.000000       | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | 19                                                               | STORY2_2         | 109             | -1.000000      | 0.000000 | 0.000000   | 0.000000       | 0.000000         | 0.000000        | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L | ) nly D                                                          | isplay Import Lo | g if Error or V | Varning Occurs |          |            |                |                  | 覆盖模式主           | ÉÌJ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

图 13 EXCEL 数据导入

| 交互交                                                    | 交互式数据库编辑- Generalized Displacement Definitions 1 - Translational |                  |                |          |          |          |          |          |    |   |          |
|--------------------------------------------------------|------------------------------------------------------------------|------------------|----------------|----------|----------|----------|----------|----------|----|---|----------|
| 文件                                                     | (F) Excel 编                                                      | 辑(E) 视图          | 图(V) 选项(C      | ))       |          |          |          |          |    |   |          |
| Generalized Displacement Definitions 1 - Translational |                                                                  |                  |                |          |          |          |          |          |    |   | 复制       |
|                                                        | GenDispl                                                         | Joint            | U1SF           | U2SF     | U3SF     | R1SF     | R2SF     | R3SF     |    | • | 粘贴       |
|                                                        | Text                                                             | Text             | Unitless       | Unitless | Unitless | m/rad    | m/rad    | m/rad    |    |   | 插入粘贴     |
| 1                                                      | STORY1_1                                                         | 100              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 2                                                      | STORY1_1                                                         | 108              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 3                                                      | STORY1_2                                                         | 101              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 4                                                      | STORY1_2                                                         | 109              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 附加空行     |
| 5                                                      | STORY1_3                                                         | 102              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 6                                                      | STORY1_3                                                         | 110              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 7                                                      | STORY1_4                                                         | 103              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 8                                                      | STORY1_4                                                         | 111              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 9                                                      | STORY1_5                                                         | 104              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | <u></u>  |
| 10                                                     | STORY1_5                                                         | 112              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 从 Excel  |
| 11                                                     | STORY1_6                                                         | 105              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 取消 Excel |
| 12                                                     | STORY1_6                                                         | 113              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 青柳神石     |
| 13                                                     | STORY1_7                                                         | 106              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 高级远坝     |
| 14                                                     | STORY1_7                                                         | 114              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 取消上一步操作  |
| 15                                                     | STORY1_8                                                         | 107              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   | 应用到模型    |
| 16                                                     | STORY1_8                                                         | 115              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 17                                                     | STORY2_1                                                         | 108              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 18                                                     | STORY2_1                                                         | 116              | 1.000000       | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    |   |          |
| 19                                                     | STORY2_2                                                         | 109              | -1.000000      | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |    | - |          |
| Only                                                   | –<br>Display Import Lo                                           | og if Error or V | /arning Occurs |          |          |          |          | 覆盖模式:    | 关闭 |   |          |

图 14 数据应用到模型

SAP2000 案例教程: 钢框架 PUSHOVER 分析



图 15 广义位移对话框

### 3、不同水准地震反应谱函数定义

在 SAP2000 中的推覆分析中,程序可以使用反应谱函数进行自动转换生成相对应的需求谱。此例拟进行不同水准地震下的推覆分析,在进行分析前,可定义相应的反应谱函数以 便于后续需求谱的生成。

在本案例使用中国反应谱函数,对应于抗震设防烈度 8 度,设计基本地震加速度值为 0.3g,多遇地震水平地震影响系数最大值 0.24,特征周期 0.45s,罕遇地震水平地震影响系 数最大值 1.2,特征周期 0.5s,周期折减系数 0.85,阻尼比 0.03,定义图 16 的小震反应谱 函数和如图 17 的大震反应谱函数。



图 16 小震反应谱函数



图 17 大震反应谱函数

#### 4、塑性较指定

框架结构构件的塑性性能在 SAP2000 中可以使用离散的塑性铰来模拟,在分析计算中, 所有的塑性变形都发生在塑性铰内。塑性铰根据其力学性能可分为:轴力铰、弯矩铰、剪力 铰、PMM 铰等。一般情况下,用户根据结构构件的受力状态指定不同类型的塑性铰,例如, 对于框架梁指定弯矩铰,对柱子指定轴力和弯矩耦合的 PMM 铰,对支撑指定轴力铰。

#### 4.1 指定默认塑性铰

通过本操作步为模型中所有的梁构件指定默认的 M 铰,为模型中所有的柱指定默认的 PMM 铰,用于后续的静力推覆分析。

#### 4.1.1 钢梁默认 M 铰指定

选择所有的梁对象,**指定>框架>铰**,在弹出的如图 18 所示的*框架铰指定*对话框中的**相 对距离**栏输入 0.1,点击**添加。** 

| tX     | 属性      | 相对距离 |                 |
|--------|---------|------|-----------------|
| Auto   | ▼ 0.1   |      | 1               |
|        |         |      | 添加(A)           |
|        |         |      | 使多少时代人们         |
|        |         |      | <u>1986×(m)</u> |
|        |         |      | 删除(D)           |
|        |         |      |                 |
|        |         |      |                 |
| 白动框架琼指 | 完新报     |      |                 |
|        | ALXA DH |      |                 |
|        |         |      |                 |
| 1      |         |      |                 |
|        |         |      |                 |

图 18 框架铰指定对话框

相对距离是指沿着构件的轴向方向,与起始端"i"的相对距离,即"i"端到铰的距离除以 框架的全长。一般情况下,可通过构造等其它措施避免塑性铰出现在梁柱的重叠区,故将塑 性铰布置在梁柱重叠区外容易发生塑性变形的位置,此位置可根据梁柱的截面大小计算得到。 在本例中,为计算的简化及指定的便利,将相对距离定为0.1,在实际工程中,工程师可根 据构件的截面尺寸计算塑性铰的实际位置。另外,一旦在程序中为构件指定了端部偏移,则 程序会自动扣除梁柱的重叠区域重新计算铰的实际布置位置。

在弹出图 19 所示的*自动框架铰指定数据*对话框中,自动铰类型选择 From Table In FEMA 356,在选择 FEMA356 表中选择 Table 5-6 (Steel Beam-Flexure),分量类型选择 **主 要的**,自由度选择 M3,变形控制铰承载力选择 E 点后降荷载,点击确定。此时,对所有被 选择的构件,均已经指定了一个距离起始端相对距离 0.1 的弯矩铰。

| 自动铰类型            |                  |           |   |
|------------------|------------------|-----------|---|
| From Tables In F | EMA 356          |           | - |
| 选择FEMA356表-      |                  |           |   |
| Table 5-6 (Steel | Beams - Flexure) |           | - |
| 分量类型             | 自由度              |           |   |
| ☞ 主要的            | C M2             | ○ E 点后降荷载 |   |
| ○ 次要的            |                  | ○ E 点后外插值 |   |
|                  |                  |           |   |
|                  |                  |           |   |

图 19 自动弯矩铰指定数据对话框

用同样的方法,为所有的梁对象指定距离起始端相对距离 0.9 的弯矩铰。点击图 18 对 话框中的**确定**按钮,完成对钢梁弯矩铰的指定。

#### 4.1.2 钢柱默认 PMM 指定

选择所有的柱对象,指定>框架>铰,在弹出的如图 18 所示的框架铰指定对话框中的相

对距离栏输入 0.1,点击添加。在弹出的 自动框架较指定数据对话框中,自动铰类型选择 From Table In FEMA 356,在选择 FEMA356表中选择 Table 5-6 (Steel Columns-Flexure),分量 类型选择 **主要的**,自由度选择 P-M2-M3,变形控制铰承载力选择 E 点后降荷载,如图 20 所示,点击确定。此时,对所有的钢柱,均已经指定了一个距离起始端相对距离 0.1 的 P-M-M 铰。

用同样的方法,为所有的柱对象指定距离起始端相对距离 0.9 的 P-M-M 铰。点击图 18 对话框中的**确定**按钮。

| - |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

图 20 自动 P-M-M 铰指定数据对话框

至此,所有的梁柱默认铰已布置完成,结构完成布置铰以后如图 21 所示。



图 21 塑性铰布置图

#### 4.2 默认铰属性查看

对于已指定的默认塑性铰,其属性可通过本小节的操作进行查看。

#### SAP2000 案例教程:钢框架 PUSHOVER 分析

点击定义>截面属性>铰属性,在弹出的*定义框架铰属性*对话框中,勾选"显示生成的属 性"选项,得到如图 22 所示的对话框,左侧"**全部铰属性**"区域中可显示出生成的铰。选择 要查看的塑性铰,点击修改/显示属性按钮,弹出如图 23 *框架铰属性数据*对话框,在此对话 框中可以看到此铰的类型(根据所选择的铰不同,显示铰不同的类型),点击修改/显示铰属 性,可以查看到此铰的详细属性数据。



图 22 定义框架铰属性对话框

| 1 | 框架较属性数据         |
|---|-----------------|
|   | ──绞属性命名         |
|   | J6H1            |
|   | 「 铰类型 ○ 力控制(脆性) |
|   | ⑦ 变形控制延性)       |
|   | Moment M3       |
|   | 修改/显示铰属性        |
|   |                 |
|   |                 |

图 23 框架铰属性数据

#### 2.2.1 钢构件 M 铰属性查看

以弯矩铰 6H1 为例,查看钢构件 M 铰属性。

在如图 22 定义框架铰属性中选择铰 6H1,点击修改/显示属性按钮,在弹出的如图 23 对话框中可看到此铰的类型为变形控制 Moment M3 铰,点击修改/显示铰属性,弹出如图 24 *框架铰属性数据 6H1-Moment M3* 对话框,此对话框中的数据描述了此弯矩铰的属性。

## 節這达

| 位移控制参数一<br>Point<br>D-<br>C-<br>A                                                                                             | Moment/SF<br>2<br>2<br>-1.12<br>-1<br>0 | Rotation/SF<br>-6<br>-4<br>-4<br>3<br>0<br>0 |          | <ul> <li>类型</li> <li>◎ 弯矩・转角</li> <li>○ 弯矩・曲率</li> <li>铰长度</li> <li>☑ 相对长度</li> </ul> | 1                  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|----------|---------------------------------------------------------------------------------------|--------------------|
| B<br>C<br>D<br>E<br>承載能力超速                                                                                                    | 1.<br>1.12<br>0.2<br>0.2                | 0.<br>4.<br>4.<br>6.                         | ☑ 对称的    | - 滞回类型和参数<br>滞回类型<br>该滞回类型                                                            | Isotropic<br>上書要参数 |
| <ul> <li>○ 调整到到</li> <li>○ 外推</li> <li>○ 今推</li> <li>○ 雪矩和转角的</li> <li>□ 使用屈用</li> <li>□ 使用屈用</li> <li>□ (0774685)</li> </ul> |                                         | 5<br>sF2 [243.0845<br>sF [5.926E-03          | ́́Ф      |                                                                                       | 6                  |
| ○ 谷许准则塑性 ○ 直接使 ● 直接使 ● 回 前上期 □ 公式                                                                                             | 生旋转/SF)<br>用(IO)<br>全(LS)<br>計攝(CP)     | E<br>[0.25<br>4 [2.<br>[3.                   | <u>ф</u> | 确定                                                                                    | <b></b>            |

图 24 框架铰属性数据 6H1-Moment M3

区域1定义了铰骨架曲线的类型,分为弯矩-转角和弯矩-曲率两种。在此例中,程序默 认使用了弯矩-转角类型。

区域2中的弯矩和转角/曲率比例调整值即为屈服弯矩和屈服转角/曲率。

区域 3 位移控制参数,定义了塑性铰的骨架曲线,其弯矩、转角/曲率区域所表示的数据分别是弯矩与屈服弯矩的比例、转角/曲率与屈服转角/屈服曲率的比例。

区域4中定义了塑性铰的容许准则,其输入的数值也是相对于转角/曲率的相对值。

区域5定义了塑性铰的变形超过E点后的承载力。

区域6定义了塑性铰的滞回类型。

#### 2.2.2 钢构件 PMM 铰属性查看

以弯矩铰 32H1 为例,查看钢构件 PMM 铰属性。

在图 25 *定义框架铰属性*中选择铰 32H1,点击修改/显示属性</mark>按钮,在弹出如图 26 的 对话框中可看到此铰的类型为变形控制 Interacting P-M2-M3 铰,即 PMM 铰,点击修改/显示较属性,弹出如图 27 *框架铰属性数据 32H1-Interacting P-M2-M3* 对话框,此对话框中的 数据描述了 PMM 铰的属性。

| 滚属性———— |             |
|---------|-------------|
| Name    | ▲ 添加新属性(A)  |
| 25H1    |             |
| 25H2    | 添加属性类型副本…   |
| 26H1    |             |
| 26H2    |             |
| 27H1    | 一般な尾砂の      |
| 27H2    |             |
| 28H1    |             |
| 28H2    | □ 显示铰细节     |
| 29H1    | ☑ 显示生成的属性   |
| 29H2    |             |
| 30H1    |             |
| 30H2    |             |
| 31H1    |             |
| 31H2    | 75.2        |
| 32H1    |             |
| 32H2    | 面当          |
| 33H1    | <u>4X/F</u> |
| 33H2    | <b>•</b>    |

图 25 定义框架铰属性对话框

| 框架铰属性数据                   |  |
|---------------------------|--|
|                           |  |
| 32H1                      |  |
|                           |  |
| ○ 力控制(脆性)<br>● 充平(約)を用す() |  |
| ◎ 受抗经制度性)                 |  |
|                           |  |
|                           |  |
| 福定 取消                     |  |
|                           |  |

图 26 框架铰属性数据

## 節這达

| 框架铰属性数据 32H1 - Interacting P-M2-M3                 |                                                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>         ・</li></ul>                      | <ul> <li>转角比例系数(SF)</li> <li>SF是每屈服转角、2<sup>MA356</sup>公式 5-2<br/>(仅对钢对象)</li> <li>● 自定义 SF</li> <li>3.557E-03</li> </ul> |
| ☑ 相对长度                                             | <ul> <li>▶● 承載能力超过点B</li> <li>●● 调整到零</li> <li>●● 调整到零</li> </ul>                                                         |
| □ 对称条件                                             |                                                                                                                           |
| ○ 弯矩转角相关是圆弧的                                       | M3 190?                                                                                                                   |
| C 弯矩转角相关是关于M2和M3双对称的                               | 1807 M2                                                                                                                   |
| <ul> <li>● 弯矩转角相关无对称</li> <li>指定对称条件要求</li> </ul>  | 4 07<br>270?                                                                                                              |
| <ol> <li>在角度0指定曲线?, 90?, 180? and 270?.</li> </ol> |                                                                                                                           |
| 2. 如果需要,指定附加中间曲线在: 0? < curve an                   | gle < 360?.                                                                                                               |
|                                                    | - 弯矩转角曲线弯曲角度                                                                                                              |
| ▲ 抽力数                                              | 角度数量 6 16                                                                                                                 |
|                                                    | ●<br>修改/显示角度                                                                                                              |
| 修改/显示弯矩轴                                           | 6角曲线数据                                                                                                                    |
| 修改/显示P-M2-M                                        | 13相关面数据                                                                                                                   |
|                                                    |                                                                                                                           |

图 27 框架铰属性数据 32H1-Interacting P-M2-M3

区域1定义了较骨架曲线的类型,分为弯矩-转角和弯矩-曲率两种。在此例中,程序默认使用了弯矩-转角类型。

区域2中的转角/曲率比例调整值即为对应于轴力为0时的屈服转角/曲率。

区域3定义了塑性铰的变形超过E点后的承载力。

区域4对称条件则定义了构件的对称性,右侧图形显示了构件局部方向与 PMM 相关面 角度之间的关系,从图中可以看出,构件强抗弯 M3 方向对应于 PMM 相关面的 90 度方向。

区域 5 中定义确定弯矩-转角/曲率骨架曲线所对应的轴力的数量,在本例中,采用了 3 个轴力来分别确定构件在不同轴向荷载作用下的骨架曲线。

区域 6 定义确定弯矩-转角/曲率骨架曲线的角度数量,此例中的默认值为 16,即在一定的轴向荷载水准下,每 22.5 度定义一条骨架曲线。

点击图 27 对话框中的修改/显示 P-M2-M3 相关面数据按钮,弹出如图 28 所示的*较相 关面 32H1-Interacting P-M2-M3* 对话框,交互面选项给出了程序在计算相关面时的 5 种方法,对于默认的 PMM 铰,其默认选项为用户定义,即程序自动计算并输入相关面的数据。在默

认的情况下,**轴向荷载-位移关系**为理想弹塑性。点击定义/显示用户相关面,弹出图 29 PMM 相关面定义对话框。

|   | 铰相关面 32H1 - Interacting P-M2-M3       |   |
|---|---------------------------------------|---|
|   | ┌ 交互面选项                               |   |
|   | ○ 默认来自相应线对象材料属性                       |   |
|   | C 钢, AISC-LRFD 式(H1-1a)和式(H1-1b)中 φ=1 |   |
|   | ○ 钢, FEMA 356式5-4                     |   |
|   | C 混凝土, ACI318-02 φ=1                  |   |
|   | ◎ 用户定义                                |   |
|   | 定义/显示用户交互面                            |   |
|   |                                       |   |
|   | ○ 弯矩转角成正比                             |   |
|   | ☞ 弹性·完全塑性                             |   |
|   |                                       |   |
| L |                                       | _ |

图 28 铰相关面 32H1-Interacting P-M2-M3 对话框



图 29 P-M2-M3 相关面的定义 32H1

区域1自定义相关面选项定义了相关面的对称关系及曲线数量和每条曲线上点的数量; 区域2可选择所定义的某一条曲线; 区域3比例系数确定相关面的最大轴力和强弱轴的最大弯矩;

区域4中则显示所选当前曲线上每一个点所对应的轴力和弯矩值,此值以比例形式给出,即与3区域内轴力和弯矩的比值;

区域5显示了相关面上第一点和最后一点(即所有曲线交点)的相对坐标值;

区域6给出了相关面的前提条件;

区域7为相关面的视图控制,可调整相关面的显示方式。

| 独向力 ・1-85.334<br>対法経曲(約)空短装角数据-                                                                                                                                                                          | ▲ 角度 0.                                                              | 2 _ 曲线 #33 【 【 】 】 KN, m, C _                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point         Moment/Yield Mom           A         0.           B         1.           C         1.12           D         0.2           E         0.2           注意:         屈服点弯矩曲相关面定:           复刻曲线数据 | Rotation/SF<br>0.<br>0.<br>4.7865<br>4.7865<br>7.1797<br>义<br>粘贴曲线数据 | -R2<br>-R3<br>-R3<br>-R3<br>-R3                                                                                                                                 |
| <ul> <li>接受准则/塑性变形 / SF)→</li> <li>直接使用(IO)</li> <li>生命安全(LS)</li> <li>防止坍塌(CP)</li> <li>在当前曲线上显示功能;</li> </ul>                                                                                          | 0.2992<br>2.3932<br>3.5899                                           | 当前曲线 ·曲线 #33<br>Force #3; Angle #11<br>单位 #15; 334<br>三维视图<br>平面 315 ● 轴向力 1185; 334<br>平面 315 ● 短裔骨干线<br>不高 35 ● □ 昆示容许准则<br>了 显示变宽线<br>30 RR MR3 MR2 ▼ 加夷当前曲线 |
| 弯矩转角信息<br>对称条件<br>轴力值数量<br>角度数量                                                                                                                                                                          | None<br>3<br>16                                                      | 角度是弯矩线<br>0度 = 绕正 M2 轴<br>90度 = 绕正 M3 轴<br>180度 = 绕负 M2 轴<br>取消                                                                                                 |

图 30 弯矩转角数据对 32H1-Interacting P-M2-M3 对话框

点击图 28 *框架铰属性数据32H1-Interacting P-M2-M3* 对话框中的修改/显示弯矩转角曲 线数据按钮,弹出图 30 *弯矩转角数据对32H1-Interacting P-M2-M3* 对话框。

区域1可选择不同的轴向荷载水准;

区域2选择相应轴向荷载下骨架曲线的角度;

区域 3 则定义了弯矩转角/曲率的骨架曲线,以比例关系给出,注意转角比例是相对应 于轴力为 0 时的转角;

区域4定义了接受准则。

#### 5、静力非线性工况定义

为了模拟建筑物承受地震荷载时的真实受力状况,需要在施加 Pushover 工况前定义结构在承受地震作用时同时承受的竖向荷载,且需要将此工况分析结束时的刚度当作 Pushover 工况的初始刚度。一般情况下,可取重力荷载代表值作为竖向荷载。

#### 5.1 竖向荷载非线性工况定义

首先定义竖向荷载非线性工况,该工况是后续 Pushover 工况的初始条件。点击定义>荷 载工况,在弹出的*定义荷载工况*对话框中点击添加新荷载工况按钮,在弹出的如图 31 所示 的*荷载工况数据*对话框中,输入荷载工况名称为 GRAV,分析类型选择非线性,使用的刚度 选择*零初始条件—无应力状态*,几何非线性参数选择*无*,在施加的荷载区域,荷载类型选 择 Load Pattern,施加1 倍的恒荷载和0.5 倍的活荷载,点击确定按钮。

| 荷载工况名称<br>GRAV                                                                                                                              | 设置定义名                                                                                |                                        | 荷载工况类型       静力       ▼                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 初始条件<br>・ 零初始条件・从3<br>・ 人上次非线性工<br>重要注释: :<br>模态荷载工況<br>所有施加的猎型荷動<br>施加的荷载<br>荷载类型<br>Load Pattern DE<br>Load Pattern DE<br>Load Pattern LN | 零初始应力状态开始<br>只续点状态继续<br>当前工况中包含前次工<br>就使用来自工况模态<br>荷载名称 比例系<br>/E 0.5<br>AD1.<br>(5) | 况中荷载<br>MODAL ▼<br>教<br>修改(M)<br>附除(D) | 分析类型       ○ 线性         ● 非线性       ● 非线性阶段施工         □几何非线性参数       ● 无         ○ P4       ● ○ 和大位移         质量源       ● Pevious |
| 其它参数<br>施加荷载<br>结果保存<br>非线性参数                                                                                                               | 全部荷載       仅最终状态       默认                                                            |                                        | <br>——————————————————————————————                                                                                               |

图 31 竖向荷载工况定义对话框

#### 5.2 Pushover 工况初始条件定义

再次添加新荷载工况,荷载工况名称输入 Push\_X,分析类型选择-非线性,使用的刚度 选择*从上次非线性工况终点状态继续*,在下拉列表中选择 GRAV,此时,在进行 Pushover 工况分析时,所用到的初始刚度为所选竖向非线性工况分析结束时的刚度,分析中所用到的 荷载包含上一次分析中的荷载,如图 32 所示。

## 節信达

| 荷载工况名称            | 注释               | 荷载工况类型     |
|-------------------|------------------|------------|
| Push_X设置定义:       | 名 修改/显示          | ● 静力 ● 设计… |
| 初始条件              |                  |            |
| ○ 零初始条件·从零初始应力状态开 | 始                | ○ 线性       |
| ◎ 从上次非线性工况终点状态继续  | GRAV             | ▼ ● 非线性    |
| 重要注释: 当前工况中包含前    | 次工况中荷载           | ○ 非线性阶段施工  |
| 模态荷载工况            |                  |            |
| 所有施加的振型荷载使用来自工况模  | 态 MODAL ·        | • 6 无      |
| 施加的荷载             |                  | C P-A      |
| 荷载类型 荷载名称 比       | 比例系数             | ○ P-Δ 和大位移 |
| Mode 💌 1 1.       |                  | 质里源        |
| Mode 1.           | 添加(A)            | Previous 🗨 |
|                   | <b>在冬</b> 早年(64) | 1          |
|                   |                  | J          |
|                   | - 删除(D)          |            |
|                   |                  |            |
|                   |                  |            |
| 施加荷载              |                  | [          |
| 结果保存 多步状态         |                  |            |
|                   |                  | 46./13     |

图 32 Pushover 工况定义对话框

#### 5.3 Pushover 工况加载模式

在施加的荷载区域,荷载类型选择 *Mode*,荷载名称选择 1,比例系数输入 1,如图 32 所示。

当荷载类型选择 Mode 时,即为模态方式施加荷载,施加荷载的分布与所选得结构模态 相关;荷载名称则指定了所施加的荷载为模态分析的第几阶模态,在本例中选择1则为施加 与模态1分布相同的荷载;比例系数是对所施加荷载的调幅。

#### 5.4 Pushover 工况荷载施加控制

在图 32 对话框中的**其它参数**区域,**施加荷载**栏点击修改/显示按钮,弹出图 33 非线性 静力分析荷载施加控制对话框。此对话框定义了在非线性分析中,荷载施加的控制方式。 SAP2000 案例教程: 钢框架 PUSHOVER 分析

| 非线性静                 | 争力分析荷载                          | <b>說施加控制</b>                         |     |       |
|----------------------|---------------------------------|--------------------------------------|-----|-------|
| -荷雪<br>○<br>•<br>-控制 | 城施加控制<br>荷載控制<br>[位移控制]<br>](位移 |                                      |     |       |
| 。<br>つ<br>加          | 使用耦合(<br>使用监测(<br>載到监测位         | <sup>立移</sup><br><sup>立移</sup><br>移值 |     | 0.576 |
|                      | 则位移<br>自由度<br>广义位移              | U1 <b>•</b>                          | 在节点 | 136   |
|                      |                                 | 确定                                   |     |       |

图 33 非线性静力分析荷载施加控制对话框

在 Pushover 分析中,所施加的荷载是按照比例逐渐增加给结构的,在分析的初始状态下,施加荷载的比例系数为零,随着 Pushover 分析的逐步进行,直至达到指定 Pushover 结 尾或者结构不能够再承受更大的荷载。控制 Pushover 分析中施加在结构上的荷载有两种方法:荷载控制和位移控制。

一般情况下,对于已知大小的荷载,当确定结构能够承受此荷载时,可使用**荷载控制**。 使用荷载控制时,程序根据非线性静力分析保存结果中的参数,将荷载分成多步逐级施加到 结构中,直至结构因材料屈服或失效,或因几何不稳定而不能再承受荷载时,Pushover分析 停止。

当施加的荷载未知或期望结构失稳时,推荐使用**位移控制**。位移控制时,程序将施加荷 载直至监测点的位移达到预先指定的位移,此时,程序会先计算需产生此位移增量的力增量, 并将此力增量施加到结构上。在施加此荷载增量的过程中,结构可能发生结构的屈服或失效, 程序会进行试算和迭代来找到产生期望位移增量时的荷载。使用位移控制,更容易捕捉到监 测随荷载变化而产生的变化,特别是邻近屈服点时监测点位移变化的过程。

由于在进行推覆前,对施加到结构上的水平荷载未知,故本例在荷载施加控制栏选择位 移控制。

**耦合位移**是结构中所有位移自由度的加权总和,即每个位移分量乘以在该自由度上施加 的荷载并求和,也可看作是所施加在每个节点上的荷载所做的功。监测位移则指监测点在指 定位移分量上的位移值。

监测位移区域定义监测点及其自由度的位移分量。一般情况下,监测点选择时,尽量选择对荷载敏感的节点,默认的监测点则选择为结构 Z 向标高最大的节点。监测位移的自由度方向应选择与施加荷载的方向相一致,如施加了 X 方向的地震荷载,则应该选择监测的自由度为 U1 (1、2、3 为节点的局部坐标方向,在默认情况下,节点的局部坐标方向与整体 X、Y、Z 方向相一致)。程序给出的"加载到监测位移值"的默认值为结构高度的 0.04 倍,此数值可以进行修改。

在本例中,使用**监测位移**,当选此项时,程序给出了默认的监测点 136,其在模型中的 位置如图 34 所示,在结构的最高处,自由度选择默认的 U1,即为施加地震荷载的 X 方向, 加载到监测位移点值在默认情况下为 0.576m,为结构总高 14.4m 的 0.04 倍。



图 34 监测点位置

#### 5.5 Pushover 工况结果保存

在图 32 对话框中的**其它参数**区域,结果保存栏点击修改/显示按钮,弹出非线性静力 *工况结果保存*对话框,如图 35 所示。在此对话框中,可选择仅保存最终状态或者保存多个 状态。当选择保存为多个状态时,可控制保存状态的最小数量和最大数量,此最小数量和最 大数量的数值,将影响 Pushover 分析的加载步数,例如,最小数量为 10 时,程序会将监测 位移值分为等值的 10 份,每一个加载步,程序试图找到监测位移增加 0.1 倍监测位移的荷 载。

为得到 Pushover 分析过程中的相关结果,本案例在结果保存栏选择**多个状态**,每个阶段保存状态的最小数量和保存状态的最大数量按照默认的 10 和 100,点击确定。如果勾选"仅保存正位移增量",则程序不保存位移增量为负时的分析结果。

| 非线性静力工况结果保存                                      |                          |
|--------------------------------------------------|--------------------------|
| 「结果保存<br>〇 仅最终状态                                 | <ul> <li>多个状态</li> </ul> |
| 对每个阶段<br>保存状态的最小数里<br>保存状态的最大数里                  | 10                       |
| □ 仅保存正位移増量 → → → → → → → → → → → → → → → → → → → | 取消                       |
|                                                  |                          |

图 35 非线性静力工况结果保存对话框

点击图 32 中的确定按钮,至此,已定义了 X 方向的 Pushover 分析工况。

## 6、运行分析

点击**分析>设置分析选项**,在弹出的对话框中勾选全部有效自由度如图 36 所示,点击 **确定**。

| 快速自由度     |              |                 |          | 通定    |
|-----------|--------------|-----------------|----------|-------|
| 空间框架      | 平面框架         | 平面轴网            | 空间桁架     |       |
| AN A      |              |                 |          | 取消    |
|           |              |                 |          | 求解器选项 |
| 1.15.3.61 | ×∠半面         | XY平面            |          |       |
| 表格文件      |              |                 |          |       |
| □ 在分析后    | 自动保为 Microso | oft Access 或 Ex | cel 表格数据 |       |
| 文件名       |              |                 |          |       |

图 36 分析选项设置

点击**分析>运行分析**,在弹出的对话框中选择运行的工况如图 37 所示,点击运行分析, 程序开始运行分析。

| エロタチャ  | <del>ж</del> .म॥    | 壮太      | 作田                    | 点击:        |
|--------|---------------------|---------|-----------------------|------------|
| 上の名称   | 兴型<br>Linear Chaffe | 1A383   | 1F/H<br>Die Mak Diese | 运行/不运行工况   |
| ΜΠΠΔΙ  | Modal               | Not Bun | Do Not Bun            |            |
| LIVE   | Linear Static       | Not Run | Do Not Run            | SEAN LONG  |
| Ex     | Response Spectrum   | Not Run | Do Not Run            | 删除工况结果     |
| Ey     | Response Spectrum   | Not Run | Do Not Run            |            |
| GRAV   | Nonlinear Static    | Not Hun | Bun                   | 运行 / 不运行所有 |
|        | Noninear static     | NULHUN  | nuri                  |            |
|        |                     |         |                       |            |
|        |                     |         |                       | 显示荷载工况树    |
| 析信息选项一 | ,                   |         | ,                     | 「 实时更新     |
| 〕总是显示  |                     |         |                       |            |
| 785    |                     |         |                       | 冱1丁汀1/丁    |

图 37 运行的荷载工况

## 7、结果查看

运行分析后,可查看相关的分析结果。

#### 7.1 竖向荷载下的变形

查看竖向荷载下结构的变形,检验结构是否出现塑性铰而进入到塑性区。点击**显示>显** 示变形,选择工况 *GRAV*,查看在竖向荷载作用下的变形,如图 38 所示。注意,在此工况 下,结构不能有铰出现。



图 38 竖向荷载作用下的变形

#### 7.2 底部剪力-监测位移曲线

点击菜单显示>显示静力 Pushover 曲线, 弹出图 39 所示的 Pushover 曲线对话框。

在1区域列出了已完成运行的静力非线性工况,选择要查看的工况 Push\_X。

区域2出图类型列出了不同的图形显示选项,包含底部剪力-监测位移曲线、ATC-40能力谱、FEMA356目标位移、FEMA440等效线性化、FEMA440位移修正。在此区域选择 *Resultant Base Shear vs Monitored Displacement*,此时图形显示区域得到结构底部剪力与分 析工况中设置的监测点的监测位移之间的关系,水平轴表示位移,竖向轴表示底部剪力。



图 39 底部剪力—监测位移曲线

#### 7.3 ATC-40 能力谱

在得到结构底部剪力和监测位移关系后,可采用不同的求解方法求解性能点,以性能点 处的结构受力状态进行结构性能评估。在本小节中,采用 ATC-40 能力谱方法求解性能点。

在图 39 所示的 Pushover 曲线对话框中,将出图类型选择为 ATC-40 Capacity Spectrum, 图中显示谱加速度—谱位移曲线,如图 40 所示。



图 40 谱加速度—谱位移曲线

图形区域中绿色曲线为能力曲线、红色曲线为不同阻尼比下的需求谱族,蓝色曲线为可 变阻尼的单一需求谱,蓝色曲线和绿色曲线的交点为结构的性能点,同时,结构的性能点显 示在对话框的右侧,用三种不同的方法进行表示。

点击图 40 所示的 Pushover 曲线对话框中的修改/显示参数按钮,弹出图 41 所示的 ATC-40 能力谱参数对话框。

| ATC-40 能力谱参数                                    |
|-------------------------------------------------|
| Pushove參数名<br>名称 A40P01                         |
| ─ 给图轴                                           |
| 雪求谱定义                                           |
|                                                 |
| ○ 自定义系数 Ca Cv Cv                                |
|                                                 |
| 结构性能类型                                          |
| CA @ B CC C用户                                   |
| - 绘图中可见项                                        |
| ☑ 显示能力曲线 颜色 💻                                   |
| ✓ 显示需求诺族 颜色 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● |
| 0.05 0.1 0.15 0.2                               |
| ✓ 显示单一需求谱 (ADRS) 颜色<br>(可变阻尼)                   |
| ▼ 显示常周期线于 颜色 ●                                  |
| 0.5 1. 1.5 2.                                   |
| 重设默认颜色                                          |
| 更新绘图                                            |
|                                                 |

图 41 ATC-40 能力谱参数对话框

将单位选择为 *KN,m,C*。绘图轴选择 Sa-Sd,在需求谱定义区域,选择*函数*,并在下拉 列表中选择定义好的大震反应谱函数 *RSPF\_R*,系数 SF 输入 *9.806*。阻尼参数定义区域,固 有+附加阻尼输入 *0.03*,结构性能类型选择 B。点击更新绘图按钮,点击确定。在更新的 *Pushover 曲线*对话框中,可看到其性能点(Teff, Beff) = (0.781, 0.054)。



图 42 更新的 Pushover 曲线对话框

#### 7.4 性能点时铰的分布状况

可通过该小节查看性能点处结构出铰的状态。

点击图 42 中的**文件>显示表格**,弹出如图 43 所示的表格数据,在此表格中可以查看 到,性能点发生在分析的第4步和第5步之间。点击 **Done** 关闭图 43 对话框,点击**确定**关 闭图 42 对话框。

| Pushover Curve Demand Capacity - ATC40 - Push X |    |          |          |            |            |          |          |          |         |
|-------------------------------------------------|----|----------|----------|------------|------------|----------|----------|----------|---------|
| Step                                            |    | Teff     | Beff     | SdCapacity | SaCapacity | SdDemand | SaDemand | Alpha    | PFPhi   |
|                                                 |    |          |          | m          |            | m        |          |          |         |
|                                                 | 0  | 0.748862 | 0.030000 | 0.000000   | 0.000000   | 0.159772 | 1.146929 | 1.000000 | 1.00000 |
|                                                 | 1  | 0.748862 | 0.030000 | 0.043276   | 0.310658   | 0.159772 | 1.146929 | 0.703913 | 1.33099 |
|                                                 | 2  | 0.748862 | 0.030000 | 0.086552   | 0.621315   | 0.159772 | 1.146929 | 0.703913 | 1.33099 |
|                                                 | 3  | 0.748862 | 0.030000 | 0.091753   | 0.658654   | 0.159772 | 1.146929 | 0.703913 | 1.33099 |
|                                                 | 4  | 0.771364 | 0.047584 | 0.135844   | 0.919095   | 0.147804 | 1.000014 | 0.703209 | 1.32628 |
|                                                 | 5  | 0.817417 | 0.079767 | 0.183219   | 1.103883   | 0.135957 | 0.819131 | 0.701391 | 1.31660 |
|                                                 | 6  | 0.879306 | 0.116727 | 0.236108   | 1.229333   | 0.128023 | 0.666571 | 0.679916 | 1.29551 |
|                                                 | 7  | 0.895310 | 0.124918 | 0.250123   | 1.256164   | 0.127918 | 0.642427 | 0.674882 | 1.28939 |
|                                                 | 8  | 0.915653 | 0.135753 | 0.266651   | 1.280326   | 0.128057 | 0.614868 | 0.668222 | 1.28133 |
|                                                 | 9  | 0.916879 | 0.136399 | 0.267634   | 1.281610   | 0.128069 | 0.613279 | 0.667743 | 1.28079 |
|                                                 | 10 | 0.917744 | 0.136879 | 0.268294   | 1.282353   | 0.128069 | 0.612126 | 0.667357 | 1.28038 |
|                                                 | 11 | 0.919757 | 0.138102 | 0.269693   | 1.283402   | 0.128038 | 0.609301 | 0.666500 | 1.27939 |
|                                                 | 12 | 1.003514 | 0.186532 | 0.324368   | 1.296673   | 0.127631 | 0.510210 | 0.635719 | 1.24128 |
|                                                 | 13 | 1.086629 | 0.217381 | 0.380477   | 1.297193   | 0.130697 | 0.445596 | 0.611507 | 1.20958 |
|                                                 | 14 | 1.169902 | 0.238087 | 0.437581   | 1.287059   | 0.134348 | 0.395158 | 0.592171 | 1.18334 |
|                                                 | 15 | 1.254026 | 0.253899 | 0.495405   | 1.268196   | 0.141837 | 0.363091 | 0.576462 | 1.16146 |
|                                                 | 16 | 1.254829 | 0.254030 | 0.495956   | 1.267981   | 0.141911 | 0.362815 | 0.576328 | 1.16127 |
| Current Sort String Current Filter String Done  |    |          |          |            |            |          |          |          |         |

图 43 分析数据表格显示

点击**显示>显示变形**,在弹出的如图 44 所示的变形后形状对话框中,将工况/组合名选 择为 **Push\_X**,多值选项中选择步,并输入 *4*,点击**确定**。激活的窗口显示在 Pushover 工况 中第 4 步时结构的出铰状况如图 45 所示,将变形转换到第 5 步,得到如图 46 所示的出铰 状况。在性能点处,结构的出铰状况处于第 4 步和第 5 步之间。

| 变形后形状                            |        | - |
|----------------------------------|--------|---|
| 「工况相合」<br>工况相合                   | Push_X | • |
| ●<br>「多値选项<br>○ 包絡(最大或最小)<br>○ 歩 | 4      |   |
| 比例调整                             |        |   |
| 面等值线 □ 在面对象上绘制位移                 | 等值线    |   |
| 选项<br>□ 未变形形状<br>▼ 三次曲线          |        |   |

图 44 变形后形状对话框



图 45 Pushover 工况第 4 步出铰状况



图 46 Pushover 工况第5步出较状况

为了更清楚了解达到结构性能点时结构的状况,可改变 Pushover 工况定义中监测位移的位移值和结果保存中的保存状态的最小数量,使达到结构的性能点时,正好处于 Pushover 工况的某一子步或者与某一子步非常接近。

在此模型中,将荷载控制中的监测位移值调整为 0.2m,把结果保存中的保存状态的最小数量改为 50 时,计算结果如图 49 所示,对比图 49 和图 50 的结果,第 45 步的结果可

作为性能点状态。如图 51 为第 45 步的出铰状态,塑性铰主要集中在底部三层的梁上,部 分铰超过 IO 进入到 LS 阶段。

| 非线性静力分析荷载施加控制                                                     |         |
|-------------------------------------------------------------------|---------|
| <ul> <li>荷載施加控制</li> <li>○ 荷載控制</li> <li>○ 位移控制</li> </ul>        |         |
| - 控制位移 -  ・ 使用耦合位移 -  ・ 使用耦合位移 -  ・ 使用器の位移 -  ・ 使用监测位移 -  加載到监测位移 | 0.2     |
| 监测位移<br>○ 自由度 U1<br>○ 广义位移                                        | 在节点 136 |
| <b></b>                                                           | 取消      |

图 47 调整后的荷载控制数据

| # | 线性静力工况结果保存                       | ALC: NAME |
|---|----------------------------------|-----------|
|   | 「结果保存<br>○ 仅最终状态                 | ● 多个状态    |
|   | ○对每个阶段<br>保存状态的最小数量<br>保存状态的最大数量 | 50        |
|   | ☑ 仅保存正位移增量                       |           |

图 48 调整后的结果保存数据



图 49 调整后的 Pushover 曲线

|                                |               | Pushov   | ver Curve Der | nand Capacity | / - ATC40 - Pi | ısh_X    |          |                          |  |  |  |  |  |  |
|--------------------------------|---------------|----------|---------------|---------------|----------------|----------|----------|--------------------------|--|--|--|--|--|--|
| Step                           | Teff          | Beff     | SdCapacity    | SaCapacity    | SdDemand       | SaDemand | Alpha    | PFPhi                    |  |  |  |  |  |  |
|                                |               |          | m             |               | m              |          |          |                          |  |  |  |  |  |  |
| 22                             | 0.748862      | 0.030000 | 0.066116      | 0.474616      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 23                             | 0.748862      | 0.030000 | 0.069121      | 0.496189      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 24                             | 0.748862      | 0.030000 | 0.072127      | 0.517763      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 25                             | 0.748862      | 0.030000 | 0.075132      | 0.539336      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 26                             | 0.748862      | 0.030000 | 0.078137      | 0.560910      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 27                             | 0.748862      | 0.030000 | 0.081142      | 0.582483      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 28                             | 0.748862      | 0.030000 | 0.084148      | 0.604057      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 29                             | 0.748862      | 0.030000 | 0.087153      | 0.625630      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 30                             | 0.748862      | 0.030000 | 0.090158      | 0.647203      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 31                             | 0.748862      | 0.030000 | 0.091753      | 0.658654      | 0.159772       | 1.146929 | 0.703913 | 1.330993                 |  |  |  |  |  |  |
| 32                             | 0.749312      | 0.030496 | 0.094769      | 0.679488      | 0.159292       | 1.142108 | 0.703921 | 1.330842                 |  |  |  |  |  |  |
| 33                             | 0.750195      | 0.031426 | 0.098648      | 0.705635      | 0.158424       | 1.133213 | 0.703936 | 1.330546                 |  |  |  |  |  |  |
| 34                             | 0.751253      | 0.032515 | 0.101681      | 0.725283      | 0.157447       | 1.123056 | 0.703957 | 1.330195                 |  |  |  |  |  |  |
| 35                             | 0.752987      | 0.034182 | 0.106568      | 0.756646      | 0.156044       | 1.107931 | 0.703881 | 1.329720                 |  |  |  |  |  |  |
| 36                             | 0.754295      | 0.035411 | 0.109602      | 0.775489      | 0.155065       | 1.097157 | 0.703779 | 1.329407                 |  |  |  |  |  |  |
| 37                             | 0.756712      | 0.037536 | 0.115197      | 0.809873      | 0.153489       | 1.079085 | 0.703485 | 1.328933                 |  |  |  |  |  |  |
| 38                             | 0.758451      | 0.039100 | 0.118232      | 0.827409      | 0.152385       | 1.066418 | 0.703233 | 1.328642                 |  |  |  |  |  |  |
| 39                             | 0.760115      | 0.040516 | 0.121268      | 0.844943      | 0.151446       | 1.055210 | 0.702994 | 1.328365                 |  |  |  |  |  |  |
| 40                             | 0.762873      | 0.042818 | 0.125886      | 0.870791      | 0.150006       | 1.037635 | 0.702872 | 1.327960                 |  |  |  |  |  |  |
| 41                             | 0.766314      | 0.045782 | 0.130387      | 0.893843      | 0.148257       | 1.016347 | 0.703226 | 1.327524                 |  |  |  |  |  |  |
| 42                             | 0.770874      | 0.049739 | 0.135309      | 0.916642      | 0.146108       | 0.989796 | 0.703223 | 1.326414                 |  |  |  |  |  |  |
| 43                             | 0.773920      | 0.052320 | 0.138404      | 0.930242      | 0.144821       | 0.973372 | 0.703295 | 1.325653                 |  |  |  |  |  |  |
| 44                             | 0.777121      | 0.054987 | 0.141513      | 0.943318      | 0.143574       | 0.957057 | 0.702907 | 1.324797                 |  |  |  |  |  |  |
| 45                             | 0.780396      | 0.057653 | 0.144622      | 0.955968      | 0.142407       | 0.941328 | 0.702652 | 1.323976                 |  |  |  |  |  |  |
| 46                             | 0.783589      | 0.060147 | 0.147726      | 0.968543      | 0.141392       | 0.927013 | 0.702374 | 1.323233                 |  |  |  |  |  |  |
| 47                             | 0.786690      | 0.062464 | 0.150830      | 0.981114      | 0.140512       | 0.913997 | 0.702107 | 1.322520                 |  |  |  |  |  |  |
| 48                             | 0.787090      | 0.062755 | 0.151237      | 0.982761      | 0.140406       | 0.912378 | 0.702072 | 1.322428                 |  |  |  |  |  |  |
| Current Sort<br>Current Filter | String String |          |               |               |                |          |          | Current Sort String Done |  |  |  |  |  |  |

图 50 调整后的分析数据表格显示



图 51 性能点时的出铰状态

7.5 层间位移角统计

由于 SAP2000 软件中不包含楼层的概念,故无法直接输出层间位移,需要工程师自行

对结果进行统计,由于在分析前已经定义了广义位移,故可在广义位移基础之上进行统计。 在本例中,Pushover 工况第 45 步的结果作为最终判断的标准。

#### 7.5.1 导出位移结果

完成编号的基础上,重新运行分析,再对节点位移进行输出。节点位移结果导出时,在 **显示>显示表**对话框中点击**修改/显示选项**,弹出**输出选项**对话框,在弹出的如图 52 对话框 中的非线性静力结果中选择"一步一步",此时,才可以输出非线性静力工况中每一步的结果。

| 振型形状                                          | 基底反应位置       全局 ×     0       全局 Y     0       全局 Z     0 | <ul> <li>屈曲振型</li> <li>振型</li> <li>●</li> <li>●&lt;</li></ul> |
|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 振型时程结果<br>© 包络图<br>© 一歩一歩<br>© 最后歩            | 非线性静力结果<br>○ 包紹图<br>○ 一歩一歩<br>○ 最后歩                       | · 稳态结果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 直接时程结果<br>で 包络图<br>C 一歩一歩<br>C 最后步          | 多步静力结果       © 包络图       C 一歩一歩       C 最后歩               | ー功率谱密度结果<br>C RMS<br>C sqrt(PSD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 多值反应组合<br>© 包络图<br>C Correspondence<br>C 可能多值 |                                                           | 确定取消                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

图 52 输出选项对话框

| 辑(E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ① 使型主义 (0 of 93 tables selected)     ◆ □ 新校教部     ◆ □ 新校教部     ◆ □ 新校教部     ◆ □ 新校教会     ◆ □ 新校会     ◆ □ 新校会 | 「存残様式機式症义」 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 确定 - 取消  |

图 53 选择广义位移结果

在选择显示表对话框中,选择分析结果>节点输出>位移>Table: Joint Displacements - Generalized,如图 53 所示。

#### 7.5.3 层间位移角计算及判别

将导出的结果导入到 EXCEL 中,筛选工况 PUSH\_X 中第 45 步中的结果,将得到的结果除以层高得到每个节点的位移角,如下表所示。

| 节点编号 | 层间<br>位移角 | 节点<br>编号 | 层间<br>位移角 | 节点<br>编号 | 层间<br>位移角 | 节点<br>编号 | 层间<br>位移角 |
|------|-----------|----------|-----------|----------|-----------|----------|-----------|
| 108  | 0.006036  | 116      | 0.013518  | 124      | 0.020309  | 132      | 0.013325  |
| 109  | 0.006039  | 117      | 0.013513  | 125      | 0.020314  | 133      | 0.013322  |
| 110  | 0.006039  | 118      | 0.013513  | 126      | 0.020315  | 134      | 0.013321  |
| 111  | 0.006036  | 119      | 0.013518  | 127      | 0.020309  | 135      | 0.013324  |
| 112  | 0.006036  | 120      | 0.013518  | 128      | 0.020309  | 136      | 0.013325  |
| 113  | 0.006039  | 121      | 0.013513  | 129      | 0.020314  | 137      | 0.013322  |
| 114  | 0.006039  | 122      | 0.013513  | 130      | 0.020315  | 138      | 0.013321  |
| 115  | 0.006036  | 123      | 0.013518  | 131      | 0.020309  | 139      | 0.013324  |

表 2 节点层间位移角

每一层中位移角最大的值即为层间位移角。根据抗震规范 5.5.5 节对结构薄弱层弹塑性 层间位移的控制,可得多高层钢框架  $\Delta u_p \leq 0.02h$ 。将层间位移角及限值表示为图形如图 54 所示。



图 54 大震层间位移角

由图可知, 层间位移角满足规范限值要求。

注:如要统计反应谱工况下的层间位移角,不能使用此方法,需要定义广义位移进行统计。

## 8、分析结果与结论

Pushover 分析主要从结构性能点(需求谱与能力谱曲线的交点)、底部剪力—监测位移曲线、层间位移角、塑性铰的分布及出现过程等几个方面对结构在地震中的性能表现进行宏观评价。以下为本案例的 Pushover 分析结果和结论。

| /         | 小震反应谱方法 | 小震 PUSHOVER | 大震 PUSHOVER |
|-----------|---------|-------------|-------------|
| 底部总剪力(KN) | 294KN   | 311         | 1444        |

表 3 不同地震工况下的底部总剪力







图 56 小震层间位移角(PUSHOVER 工况)



图 57 弹塑性层间位移角(Pushov 工况)

#### SAP2000 案例教程:钢框架 PUSHOVER 分析



图 58 X 向底部剪力—顶点位移曲线



图 59 向大震下结构需求谱与能力谱曲线关系

塑性铰的出现过程: 在分析过程中, 各类塑性铰共 144 个, 随着 Pushover 工况的中推 覆力的增加, 塑性铰发生屈服和进入塑性的规律如表 4 所示, 在性能点处, 其塑性铰的分 布如图 60 所示。

|      |      |       | TABLE  | : Pushov | er Curve | - Push_ | X    |         |       |
|------|------|-------|--------|----------|----------|---------|------|---------|-------|
| Step | AtoB | BtoIO | IOtoLS | LStoCP   | CPtoC    | CtoD    | DtoE | BeyondE | Total |
| 0-30 | 144  | 0     | 0      | 0        | 0        | 0       | 0    | 0       | 144   |
| 33   | 142  | 2     | 0      | 0        | 0        | 0       | 0    | 0       | 144   |
| 34   | 142  | 2     | 0      | 0        | 0        | 0       | 0    | 0       | 144   |
| 35   | 138  | 6     | 0      | 0        | 0        | 0       | 0    | 0       | 144   |
| 36   | 138  | 6     | 0      | 0        | 0        | 0       | 0    | 0       | 144   |
| 37   | 132  | 8     | 2      | 0        | 0        | 0       | 0    | 0       | 144   |
| 38   | 132  | 6     | 4      | 0        | 0        | 0       | 0    | 0       | 144   |
| 39   | 132  | 10    | 6      | 0        | 0        | 0       | 0    | 0       | 144   |
| 40   | 128  | 8     | 8      | 0        | 0        | 0       | 0    | 0       | 144   |
| 41   | 126  | 6     | 10     | 0        | 0        | 0       | 0    | 0       | 144   |
| 42   | 126  | 10    | 10     | 0        | 0        | 0       | 0    | 0       | 144   |
| 43   | 122  | 12    | 14     | 0        | 0        | 0       | 0    | 0       | 144   |
| 44   | 122  | 14    | 16     | 0        | 0        | 0       | 0    | 0       | 144   |
| 45   | 120  | 16    | 18     | 0        | 0        | 0       | 0    | 0       | 144   |
| 46   | 120  | 12    | 24     | 0        | 0        | 0       | 0    | 0       | 144   |
| 47   | 116  | 14    | 24     | 0        | 0        | 0       | 0    | 0       | 144   |
| 48   | 114  | 12    | 26     | 0        | 0        | 0       | 0    | 0       | 144   |

| 表 4 | X 向推覆力作用 | 下塑性铰发生发展规律 |
|-----|----------|------------|
|-----|----------|------------|



图 60 X 向性能点处的塑性较分布

结论:通过上述分析可以看出,结构达到性能点处的层间位移角最大值为1/50,位于第3层,表明结构的相对薄弱层位于第3层,但其层间位移角等于规范限值1/50,满足规范大震下弹塑性层间位移角限值的要求。

从塑性铰发生和发展看,当达到性能点时,绝大多数塑性铰(120个)处于弹性工作状态,所有已进入塑性工作状态的塑性铰均处于 CP 状态(防止倒塌)以下,显示结构具有良好的变形性能。通过以上分析结论可知,结构 X 方向的抗震性能满足大震不倒的设防目标。 至此,已完成 X 向 Pushover 性能评估,其它加载模式及其他方向的分析可参考以上步骤自行完成。

#### 要点详解

#### 1、默认塑性铰的属性

塑性铰的属性是和构件的截面相关的,对于不同的截面,同种类型的塑性铰的属性也是 不同的,这也就是说,结构中采用的截面越多,所需要的塑性铰的属性也越多。如果要对每 一个截面定义其塑性铰的属性,需要大量的时间和精力。在 SAP2000 中,程序可以支持对 特定的截面指定默认的塑性铰,当指定了默认的塑性铰时,程序将自动计算塑性铰的属性, 减少了人工指定塑性铰的大量繁杂工作,提升工作效率。

本小节将介绍程序默认塑性铰属性的计算方法。

### 1.1 默认钢构件 M 铰属性计算

以框架 6 为例说明 M 铰属性的计算过程。框架截面为 HN400×150×8×13,长度为 5.5m, 材料 Q235,其截面属性如图 61 所示。

| ——船劫据       |                      |
|-------------|----------------------|
| 材料名称和昆示颜色   | Q235                 |
| 材料类刑        | Steel                |
| 林树注题        | 修改/昆示注释              |
|             |                      |
| 重里和质量       |                      |
| 重量密度        | 7.700E-05 N, mm, C ▼ |
| 质量密度        | 7.850E-09            |
| 各项同性属性数据    |                      |
| 弹性模量,E      | 210000.              |
| 泊松比,U       | 0.3                  |
| 线膨胀系数,A     | 1.170E-05            |
| 剪切模量,G      | 80769.23             |
| 钢材料其他属性     |                      |
| 屈服强度,fyk    | 235.                 |
| 极限强度, fuk   | 390.                 |
| 有效屈服强度, fye | 235.                 |
| 有效抗拉强度, fue | 430.                 |
|             |                      |
| 切换到高级属性显示   |                      |

图 61 钢构件材料属性对话框

| 属性数据       |           |             |          |
|------------|-----------|-------------|----------|
| 截面名称       | HN4       | 00×150×8×13 |          |
| 属性         |           | ,           |          |
| 橫截面(轴向)面积  | 7037.     | 3轴截面模里      | 895300.  |
| 围绕3轴的惯性矩   | 1.791E+08 | 2轴截面模里      | 97760.   |
| 围绕2轴的惯性矩   | 7332000.  | 3轴塑性模量      | 1034402. |
| 绕 2-3 惯性矩积 | 0.        | 2轴塑性模量      | 152234.  |
| 2轴方向的抗剪截面  | 3200.     | 3轴回转半径      | 159.5165 |
| 3轴方向的抗剪截面  | 3250.     | 2轴回转半径      | 32.2788  |
| 扭转常数       | 270673.56 | 剪切偏心 (x3)   | 0.       |
|            | [         | ·确定         |          |

图 62 框架截面属性(单位 mm)

| ŧ(E)                                                         |                                                          |                                                                |                       |                                                                                                             |              |
|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------|--------------|
| 修控制参数                                                        | ·                                                        |                                                                |                       | - ***                                                                                                       |              |
| Point<br>E-<br>D-<br>C-<br>B-<br>A<br>A<br>B-<br>C<br>C<br>D | Moment/SF<br>2<br>1<br>-1<br>0<br>1.<br>1.12<br>0.2      | Rotation/SF<br>-6<br>-4<br>-4<br>0<br>0<br>0<br>0.<br>4.<br>4. |                       | <ul> <li>ご 当短・結角</li> <li>ご 当短・曲率</li> <li>読长度</li> <li>「戸 相对长度</li> <li>「滞回类型和参数</li> <li>「滞回类型</li> </ul> | Isotropic    |
| ■載能力超 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●                  | 0.2<br>过点B<br>季<br>的比例调整<br>服弯拒<br>雪拒<br>服症状<br>旋转<br>旋转 | 6.<br>SF [2.431E+08<br>SF [5.926E-03                           |                       | · 该带回类型步                                                                                                    | <b>需要参</b> 数 |
| (XXXIII<br>容许准则值<br>直接<br>【 生命<br>【 你止<br>□ 华图中              | 18/13年)<br>健用(ID)<br>安全(LS)<br>坍塌(CP)<br>見示容许准则          | <b>E</b><br>0.25<br>2.<br>3.                                   | 负<br>[<br>[<br>[<br>[ | 确定                                                                                                          | INX.         |

图 63 框架铰属性数据 6H1-Moment M3

#### 1.1.1 屈服弯矩、屈服转角计算

根据 FEMA356 第 5.5.2.2.2 条,对钢梁屈服转角计算公式 5-1 知

$$\theta_{y} = \frac{ZF_{ye}l_{b}}{6EI_{b}}$$

屈服弯矩计算公式 5-3 知

$$Q_{CE} = ZF_{ye}$$

其中 Z 为截面塑性模量, $F_{ye}$ 为材料有效屈服应力, $l_b$ 为梁长度, E 为弹性模量, $I_b$ 为截面惯性矩。

则此钢梁的屈服转角和屈服弯矩计算如下:

$$\theta_{y} = \frac{ZF_{ye}l_{b}}{6EI_{b}} = \frac{1034402 \times 235 \times 5500}{6 \times 2.1 \times 10^{5} \times 1.791 \times 10^{8}} = 5.925 \times 10^{-3}$$

$$Q_{CE} = ZF_{ve} = 1034402 \times 235 = 2.431 \times 10^8$$

其值与默认生成的塑性铰完全一致。

1.1.2 骨架曲线及容许准则计算



图 64 塑性铰骨架曲线示意图

由 FEMA356 第 5.5.2.2.2 条知, B 点到 C 点的斜率是 A 点到 B 点斜率的 3%, 在 SAP2000 中, 塑性铰在弹性阶段是没有转角的, 故 B 点到 C 点的斜率考虑 0.03。

根据如表 5 所示的 FEMA 表计算方法,进行相关计算。

| 表 | 5 | 钢构件梁 M 铰可接受准则 |
|---|---|---------------|
|   |   |               |

| Table 5-6 Modelin<br>Compor                                                                                | g Paramet<br>nents                            | ers and Ac                    | ceptance C                     | riteria for                     | Nonlinear l     | Procedures                     | Sector Structur                | al Steel                   |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------|--------------------------------|---------------------------------|-----------------|--------------------------------|--------------------------------|----------------------------|
|                                                                                                            | Modeling Parameters Plastic Rotation Residual |                               | Acceptance Criteria            |                                 |                 |                                |                                |                            |
|                                                                                                            |                                               |                               | otation Residual               | Plastic Rotation Angle, Radians |                 |                                |                                |                            |
|                                                                                                            | An<br>Rad                                     | ans Strength Ratio            |                                |                                 | Primary         |                                | Secondary                      |                            |
| Component/Action                                                                                           | а                                             | ь                             | c                              | ю                               | LS              | СР                             | LS                             | СР                         |
| Beams—flexure                                                                                              |                                               |                               |                                |                                 |                 |                                |                                |                            |
| a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$<br>and<br>$\frac{h}{t_w} \le \frac{418}{\sqrt{F_{ye}}}$ | 90 <sub>y</sub>                               | 118 <sub>y</sub>              | 0.6                            | 10y                             | 60 <sub>y</sub> | 80 <sub>y</sub>                | 98 <sub>y</sub>                | 118 <sub>y</sub>           |
| b. $\frac{\frac{h_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}}{\frac{640}{t_w} \ge \frac{640}{\sqrt{F_{ye}}}}$   | 40 <sub>y</sub>                               | 68 <sub>y</sub>               | 0.2                            | 0.258 <sub>y</sub>              | 20 <sub>y</sub> | 30 <sub>y</sub>                | 30 <sub>y</sub>                | 48 <sub>y</sub>            |
| c. Other                                                                                                   | Linear inter<br>web slend                     | polation betw<br>lerness (sec | veen the valu<br>ond term) sha | es on lines a<br>all be perforn | and b for bond  | th flange sle<br>lowest result | nderness (fin<br>ing value sha | st term) and<br>Il be used |

$$\pm \frac{b_f}{2 \cdot t_f} = \frac{150}{2 \cdot 13} = 5.769 > \frac{65}{\sqrt{F_{ye}}} = \frac{65}{\sqrt{235}} = 4.24 \ \text{m},$$

 $a = 4\theta_y$ ,  $b = 6\theta_y$ , c = 0.2,  $IO = 0.25\theta_y$ ,  $LS = 2\theta_y$ ,  $CP = 3\theta_y$ 

换算成弯矩/屈服弯矩、转角/屈服转角,则

$$B=\{0,1\}, C=\{4,1.12\}, D=\{4,0.2\}, E=\{6,0.2\}$$

容许准则塑性转角/屈服转角分别对应于

$$IO = 0.25$$
,  $LS = 2$ ,  $CP = 3$ 

与程序自动生成的塑性铰属性完全吻合。

#### 1.2 默认钢构件 P-M-M 铰计算

以钢框架柱 32 为例说明 P-M-M 较属性的计算过程。框架截面为 HW400×400×18×28, 长度为 3.6m, 材料 Q235。

| 截面名称               | HW400X400X18X28            | 显示颜色                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 截面注释               | 修改/显示注释                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 从截面属性文件中提取数        | 据                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 打开文件 <b>c:\p</b> i | rogram files\computers and | 导入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 尺寸                 |                            | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 高度(13)             | 414.                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 上 <b>翼</b> 缘宽度(t2) | 405.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 上翼缘厚度(tf)          | 28.                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | 18.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 下翼缘宽度 (t2b)        | 405.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 下翼缘厚度(tfb)         | 28.                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                            | また おお あ 届 財 しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう あんしょう しょうしょう しょう |
| 材料                 | 周田修正                       | Time Descendent Descetion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ±  Q235            |                            | Time Dependent Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

图 65 框架截面尺寸数据(单位 mm)

## 記信达

| 截面名称       | HW        | 400×400×18×28   |           |
|------------|-----------|-----------------|-----------|
| 属性         |           | _               |           |
| 橫截面(轴向)面积  | 29539.    | 3轴截面模里          | 4517778.  |
| 围绕3轴的惯性矩   | 9.352E+08 | 2轴截面模里          | 1531950.6 |
| 围绕2轴的惯性矩   | 3.102E+08 | 。<br>3 轴塑性模量    | 4953978.  |
| 绕 2-3 惯性矩积 | 0.        | 2 轴塑性模量         | 2325348.  |
| 2轴方向的抗剪截面  | 7452.     | 3 轴回转半径         | 177.9302  |
| 3轴方向的抗剪截面  | 18900.    | 2 <b>轴回转</b> 半径 | 102.4795  |
| 扭转常数       | 6342792.  | 剪切偏心 (x3)       | 0.        |

图 66 框架截面属性(单位 mm)

#### 1.2.1 相关面计算

| 交互      | <u>_</u> 面选项                        |
|---------|-------------------------------------|
| 0       | 默认来自相应线对象材料属性                       |
| 0       | 钢, AISC-LRFD 式(H1-1a)和式(H1-1b)中 φ=1 |
| С       | 钢, FEMA 356式5-4                     |
| С       | 混凝土, ACI318-02 φ=1                  |
| $\odot$ | 用户定义                                |
|         | 定义/显示用户交互面                          |
| 轴向      | ]<br>荷载 · 位移 关系                     |
| C       | 弯矩转角成正比                             |
| 0       | 弹性-完全塑性                             |
|         | 75                                  |

#### 图 67 铰相关面 32H1-Interacting P-M2-M3

钢构件 P-M-M 铰相关面计算在 SAP2000 中共提供 5 种计算方法图 67 所示,对于程序 默认生成的钢 P-M-M 铰,则使用用户定义的相关面,其相关的数值计算均由钢材的有效屈 服应力 *F*<sub>ve</sub> 计算得到。

#### 1.2.2 屈服转角计算

| 框架铰属性数据 32H1 - Interacting P-M2-M3                                                                                  |                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>         ・絞指定类型         <ul> <li>                  ご 弯矩 - 转角                 ご 弯矩 - 曲率</li></ul></li></ul> | 转角比例系数(SF)        ○ SF是每屈服转角,FEMA356公式 5-2<br>(仅对钢对象)         ○ 自定义 SF         3.557E-03             承載能力超过点B         ○ 调整到零       ○ 外推 |
| □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□                                                                              |                                                                                                                                         |
| <ul> <li>管矩转角相关是圆弧的</li> <li>管矩转角相关是关于M2和M300对称的</li> <li>管矩转角相关无对称</li> <li>指定对称条件要求</li> </ul>                    | M3 1907<br>1807<br>2707                                                                                                                 |
| <ol> <li>在角度硝定曲线?, 90?, 180? and 270?.</li> <li>如果需要 指定附加中间曲线在: 0? &lt; curve an</li> </ol>                         | gle < 360?.                                                                                                                             |
| 对弯矩转角曲线的轴力<br>轴力数                                                                                                   | 弯矩转角曲线弯曲角度<br>角度数量                                                                                                                      |
| 修改/显示弯矩轴<br>修改/显示P-M2-M<br>                                                                                         | 5角曲线数据…<br>13相关面数据…<br>[]                                                                                                               |

图 68 框架铰属性数据 32H1-Interacting P-M2-M3

根据 FEMA356, 对钢柱屈服转角计算公式 5-2 知

$$\theta_{y} = \frac{ZF_{ye}l_{c}}{6EI_{c}} \left(1 - \frac{P}{P_{ye}}\right)$$

当取轴力为0时,计算得到

$$\theta_{y} = \frac{ZF_{ye}l_{c}}{6EI_{c}} \left(1 - \frac{P}{P_{ye}}\right) = \frac{4953978 \times 235 \times 3600}{6 \times 2.1 \times 10^{5} \times 9.352 \times 10^{8}} = 3.557 \times 10^{-3}$$

为图 68 中的转角比例系数。

### 1.2.3 骨架曲线及容许准则计算

| 编辑(E)       选择曲线     単位       独向力     2745986       小mm, C       对选择曲线的弯矩特角数据       Point Moment/Yield Mom       B       0.       0.       0.2       0.30066       注意: 屈服点弯矩由相关面定义       資制曲线数据       上       資制曲线数据       上       資制曲线数据       上       日       1.0       0.2       0.30066       注意: 屈服点弯矩由相关面定义       資制曲线数据       半       指数使用(10)       10.1511       平面       315       中       中       中       1315       中       1315       中       1315       1316       1317       1318       1319       1319       1310       1311       1312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 送择曲线       単位         独向力       2745386       角度       90       曲线 #5       単位         N.mm, C        N.mm, C          N3选择曲线的弯矩转角数据       Point Moment/Yield Mom       Rotation/SF            A       0.       0.              B       1.       0. <t< th=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 抽向力       2745986       角度       90.       曲线 #5       ■       N.mm, C         对选择曲线的弯旋转角数据       Point Moment/Yield Mom       Rotation/SF                                                                                                                     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 对选择曲线的弯矩转角数据         Point Moment/Yield Mom       Rotation/SF         A       0.         B       1.         C       1.03         D       0.2         0.2       0.6044         E       0.2         0.2       0.9066         注意: 屈服点弯矩由相关面定义         夏射曲线发掘       #kllsh曲线发掘         指受难则I叠性变形 / SF)       Unitship         直接使用 (IO)       0.1511         重 生物安全(LS)       0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Point Moment/Yield Mom       Rotation/SF         A       0.       0.         B       1.       0.         C       1.03       0.6044         D       0.2       0.6044         E       0.2       0.9066         注意: 屈服点弯矩由相关面定义       雪前曲线 = 15       -R3         運動曲线数据       私助出线数据       私助出线数据          当前曲线 = 15       -R3         上       正確和       -R3         上       正確和       -R3          -R3       -R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A     0.     0.       B     1.     0.       C     1.03     0.6044       D     0.2     0.6044       D     0.2     0.9066       注意: 屈服点弯短由相关面定义     当前曲线: 曲线 #5     -R2       复制曲线数据     私助出曲线数据       投资准则@性变形 / SF)     当前曲线: 曲线 #5       直接使用(IO)     0.1511       重 接機用(IO)     0.1511       重 生物安全(LS)     0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8       1.       0.         C       1.03       0.6044         D       0.2       0.6044         E       0.2       0.9066         注意:       屈服点弯矩由相关面定义       二         重射曲线数据       粘贴曲线数据       当前曲线 #5         接受准则證性变形 / SF)       三       三         重 直接使用 (IO)       0.1511       三         全 生物安全(LS)       0.3022       131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C     1.03     0.0044       D     0.2     0.6044       e     0.2     0.9066       注意: 屈服点弯矩由相关面定义         夏制曲线数据     粘心曲线数据        指發准则證性变形 / SF)         直 直接使用 (IO)     0.1511        生命安全(LS)     0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.2     0.0044       122     0.9066       注意: 屈服点弯矩由相关面定义       重制曲线数据     粘贴曲线数据       当前曲线 #5       指数第四個程度形 / SF)       直接使用(10)       1511       生命安全(LS)       0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 注意:屈服点弯矩由相关面定义     1     0.000     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 注意: 屈服点 当起田相夫 面定义<br>重制曲线数据 私品曲线数据 当前曲线 :曲线 #5 Hat = 4 A - 2745986<br>当前曲线 : 曲线 #5 Hat = 2745986<br>三维视图 平面 315 新 袖力 = -2745986 美<br>年春安全(LS) 0.3022 标高 35 美 「 隐藏骨干线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 日制 送载 推揭                 日制 送载 推揭                日前 曲线 由线 推告<br>Force #1; Angle #5                街 節 曲线 - 曲线 #5<br>Force #1; Angle #5                街 節 曲线 - 曲线 #5<br>Force #1; Angle #5                街 節 曲线 - 曲线 #5<br>Force #1; Angle #5                1511                 154                 152                 154                 152                     153                 153                 153                 153                 153                 153                 153                 153                 153                 153                 15                 153                 153                 153                 154                 153                 153                 153               153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 当前曲线:曲线,#5     三维面<br>Force #1; Angle #5     1       接受准则塑性变形 / SF)     -2745996       直接使用(10)     0.1511       生命安全(LS)     0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 接受准则塑性变形 / SF)         Encree #1; Angle #5         轴力 = -2745986           直接使用(I0)         0.1511         平面         315         筆         轴向力         -2745986         单           生命安全(LS)         0.3022         标高         35         量         □         隐藏骨干线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ■ 直接使用(0)     0.1511       ■ 生命安全(LS)     0.3022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ 1313 · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| □.3022 标高 35 量 □ 隐藏骨干线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| □ I (14835 □ I (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ (14835) □ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| □ 在当前曲线上显示功能点 3D RR MR3 MR2 □ 加亮当前曲线                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 「 弯矩转角信息                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 角度数量 16 180度 = 绕负 M2轴 取当                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 曲线总数 48 270 度 = 绕负 M3轴                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

图 69 弯矩转角数据对 32H1-Interacting P-M2-M3

#### 表 6 钢柱 PMM 铰可接受准则

#### Table 5-6 Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Components (continued)

|                                                                                                                    | Mod                       | eling Param                   | eters                          | Acceptance Criteria             |                          |                                |                                 |                            |
|--------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------|--------------------------------|---------------------------------|--------------------------|--------------------------------|---------------------------------|----------------------------|
|                                                                                                                    | Plastic Rotation          |                               | Residual                       | Plastic Rotation Angle, Radians |                          |                                |                                 |                            |
|                                                                                                                    | An<br>Rad                 | gle,<br>ians                  | Strength<br>Ratio              |                                 | Primary                  |                                | Secondary                       |                            |
| Component/Action                                                                                                   | а                         | ь                             | c                              | ю                               | LS                       | СР                             | LS                              | СР                         |
| For 0.2 < <i>P</i> / <i>P</i> <sub><i>CL</i></sub> < 0.50                                                          |                           |                               |                                |                                 |                          |                                |                                 |                            |
| a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$<br>and<br>$\frac{h}{t_w} \le \frac{260}{\sqrt{F_{ye}}}$         | _3                        | _4                            | 0.2                            | 0.25θ <sub>у</sub>              | _5                       | _3                             | 6                               | _4                         |
| b. $\frac{\frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}}{\text{or}}$ $\frac{h}{t_w} \ge \frac{400}{\sqrt{F_{ye}}}$ | 10y                       | 1.50 <sub>у</sub>             | 0.2                            | 0.25θ <sub>y</sub>              | 0.50 <sub>y</sub>        | 0.80 <sub>y</sub>              | 1.2θ <sub>y</sub>               | 1.20 <sub>y</sub>          |
| c. Other                                                                                                           | Linear inter<br>web slend | polation betw<br>erness (seco | veen the valu<br>and term) sha | es on lines a<br>all be perforn | and b for boned, and the | th flange sle<br>lowest result | nderness (firs<br>ing value sha | st term) and<br>II be used |

当轴力P1=2963336N时,其转角

$$\theta_{y1} = \frac{ZF_{ye}l_c}{6EI_c} \left(1 - \frac{P_1}{P_{ye}}\right) = 2.148 \times 10^{-3}$$

则知
$$\frac{\theta_{y1}}{\theta_y} = 0.604$$
。

由表 5-6,

$$\frac{b_f}{2 \cdot t_f} = \frac{405}{2 \cdot 28} = 7.232 > \frac{65}{\sqrt{F_{ye}}} = \frac{65}{\sqrt{235}} = 4.24$$

$$0.2 < P_1 / P_{CL} < 0.5$$

根据表 6 可知

$$a = \theta_{y_1}, b = 1.5\theta_{y_1}, c = 0.2, IO = 0.25\theta_{y_1}, LS = 0.5\theta_{y_1}, CP = 0.8\theta_{y_1}$$

换算成弯矩/屈服弯矩、转角/屈服转角,则

 $B=\{0,1\}, C=\{0.604,1.03\}, D=\{0.604,0.2\}, E=\{0.906,0.2\}$ 

容许准则塑性转角/屈服转角分别对应于

IO = 0.151, LS = 0.302, CP = 0.483

与程序自动生成的塑性铰属性完全吻合。

注: P<sub>CL</sub> 为柱抗压强度的下限值,此值按照美国规范计算。

## 問信达

| 弯矩转角数据对 32H1 - Interactir<br>编辑(F)                                                                                                                    | ng P-M2-M3                                            |                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·选择曲线<br>抽向力 -1098394                                                                                                                                 | ▶ 角度 90.                                              | ◆ 曲线 #37 【▲ ▶ ▶ 】 「単位<br>N, mm, C ▼                                                                                                                                 |
| 对选择曲线的弯矩转角数据                                                                                                                                          |                                                       |                                                                                                                                                                     |
| Point         Moment/Yield Mom           A         0.           B         1.           C         1.12           D         0.2           E         0.2 | Rotation/SF<br>0,<br>0,<br>3.3671<br>3.3671<br>5.0506 |                                                                                                                                                                     |
| 注意:屈服点弯矩由相关面定》<br>夏制曲线数据                                                                                                                              | く<br>粘贴曲线数据                                           | 」<br>▲<br>当前曲线 ·曲线 #37<br>Force #3: Angle #5<br>二维面<br>電台面<br>第2                                                                                                    |
| 直接使用(IO)<br>生命安全(LS) 匠 防止坍塌(CP) □ 在当前曲线上显示功能は                                                                                                         | 0.2104 1.6835 2.5253                                  | 平面     315     轴向力     1098394     ▲       标高     35     ▲     □     腺藏骨干线       孔径角     0     ▲     □     显示容许准则       30     BR     MB3     MB2     ✓     「加高当範囲线 |
| 弯矩转角信息<br>对称条件<br>轴力值数里<br>角度数里<br>曲线总数                                                                                                               | None<br>3<br>16<br>48                                 | 角度是弯拒绕       0度     = 绕正 M2 袖       30度     = 绕正 M3 袖       180度     = 绕负 M2 袖       270度     = 绕负 M3 袖                                                             |

图 70 弯矩转角数据对 32H1-Interacting P-M2-M3

#### 表 7 钢柱 PMM 铰可接受准则

|                                                                                               | Mode                                                          | Modeling Parameters |                                 |                    | Acceptance Criteria |                 |                 |                  |  |  |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------|---------------------------------|--------------------|---------------------|-----------------|-----------------|------------------|--|--|
|                                                                                               | Plastic Rotation Residual<br>Angle, Strength<br>Radians Ratio |                     | Plastic Rotation Angle, Radians |                    |                     |                 |                 |                  |  |  |
|                                                                                               |                                                               |                     | Strength<br>Ratio               |                    | Primary             |                 | Secondary       |                  |  |  |
| Component/Action                                                                              | а                                                             | b                   | с                               | ю                  | LS                  | СР              | LS              | СР               |  |  |
| Columns—flexure 2,7                                                                           |                                                               |                     |                                 |                    |                     |                 |                 |                  |  |  |
| For P/P <sub>CL</sub> < 0.20                                                                  |                                                               |                     |                                 |                    |                     |                 |                 |                  |  |  |
| a. $\frac{b_f}{2t_f} \le \frac{52}{\sqrt{F_{ye}}}$<br>and<br>h = 300                          | 90 <sub>y</sub>                                               | 11θ <sub>y</sub>    | 0.6                             | 10y                | 6θy                 | 89 <sub>y</sub> | 98 <sub>y</sub> | 110 <sub>y</sub> |  |  |
| $\frac{1}{t_w} \le \frac{1}{\sqrt{F_{ye}}}$                                                   |                                                               |                     |                                 |                    |                     |                 |                 |                  |  |  |
| b. $d \frac{b_f}{2t_f} \ge \frac{65}{\sqrt{F_{ye}}}$<br>or<br>$\frac{h}{2} \ge \frac{460}{2}$ | 4θ <sub>y</sub>                                               | 60y                 | 0.2                             | 0.250 <sub>y</sub> | 20y                 | Зθ <sub>у</sub> | Зθ <sub>у</sub> | 4θ <sub>y</sub>  |  |  |
| $\overline{t_w} = \sqrt{F_{ye}}$<br>c. Other                                                  | Linear inter                                                  | polation bet        | ween the value                  | es on lines a      | and b for bo        | th flance sle   | nderness (fir   | st term) a       |  |  |

当轴力 $P_2=1098394N$ 时,

$$\frac{\theta_{y2}}{\theta_{y}} = 1 - \frac{P_{2}}{P_{ye}} = 0.842$$

由表 5-6,

$$\frac{b_f}{2 \cdot t_f} = \frac{405}{2 \cdot 28} = 7.232 > \frac{65}{\sqrt{F_{ye}}} = \frac{65}{\sqrt{235}} = 4.24 ,$$

$$P_2 / P_{CL} < 0.2$$

则知
$$a = 4\theta_{y_2}$$
,  $b = 6\theta_{y_2}$ ,  $c = 0.2$ ,  $IO = 0.25\theta_{y_1}$ ,  $LS = 2\theta_{y_1}$ ,  $CP = 3\theta_{y_1}$ 

换算成弯矩/屈服弯矩、转角/屈服转角

$$B=\{0,1\}, C=\{3.368,1.12\}, D=\{3.368,0.2\}, E=\{5.052,0.2\}$$

容许准则塑性转角/屈服转角分别对应于

IO = 0.211, LS = 1.684, CP = 2.526

与程序自动生成的塑性铰属性完全吻合。

## 2、加载模式的定义

| 施 | 加的荷载——        |      |      |       |
|---|---------------|------|------|-------|
| _ | 荷载类型          | 荷载名称 | 比例系数 |       |
|   | Accel 🗾       | UX 🔻 | -1.  |       |
|   | Load Pattern  | UX   | -1.  | 添加(A) |
|   | Accel<br>Mode |      |      |       |
| ľ |               |      |      | 修改(M) |
|   |               |      |      | 删除(D) |
|   |               |      |      |       |

#### 图 71 施加的荷载对话框

静力 Pushover 工况定义过程中,在施加的荷载栏,可以选择三种不同类型的荷载形式 施加在结构上,包含荷载模式、加速度、振型。选择荷载模式时,可以将已经定义好的一个 或者多个荷载模式以一定的比例施加到结构中;选择加速度时,可以将加速度施加在结构整 体坐标系下任意 X、Y、Z 方向,施加到每个节点的力与节点质量成正比;选择模态时,需 要选择模态的振型,此时施加到每一个节点的力和振型的位移、振型角频率平方及节点质量 成正比。

在施加荷载时,可以选择一种或者多种不同类型的荷载施加在一个工况中考虑不同的受力情况。对于本例来说,选择的为加速度,即为结构施加了与质量分布成正比例的荷载。

## 3、ATC-40 能力谱参数

| -Pushover参数:  | 名                   |        | □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□ |   |
|---------------|---------------------|--------|----------------------------------------|---|
| 名称            | A40P01              |        | KN, m, C                               | • |
| 绘图轴           |                     |        | 标签和范围                                  |   |
|               | O Sa · T · O S      | Sd-T   | 设置轴数据…                                 |   |
| 需求谱定义一        |                     |        |                                        |   |
| ⊙ 函数          | RSPF_R              | -      | SF 9.806                               |   |
| ○ 自定义系        | 数 Ca                |        | Cv                                     | _ |
| 阻尼参数定义        |                     |        | 0.00                                   |   |
| 固有 + 附加       | 昆尼                  |        | 0.03                                   |   |
| 結构性能类3<br>〇 A | ₽<br>● B ⊂ C        | ○ 用户   | 修改/显示 .                                | , |
| 绘图中可见项        |                     |        |                                        |   |
| ☑ 显示能力        | 曲线                  |        | 颜色 📙                                   |   |
| ☑ 显示需求        | 谱族                  |        | 颜色 📕                                   |   |
| 阻尼比           |                     |        |                                        |   |
| 0.05          | 0.1                 | 0.15   | J0.2                                   |   |
| ✓ 显示单一<br>(可) | ·需求谱 (ADRS)<br>变阻尼) |        | 颜色 📘                                   |   |
| ☑ 显示常周        | 期线于                 |        | 颜色                                     |   |
| 0.5           | 1.                  | 1.5    | 2.                                     |   |
|               | 1                   | 重设默认颜色 |                                        |   |
|               |                     |        |                                        |   |

图 72 ATC-40 能力谱参数对话框

#### 3.1 绘图轴

绘图轴的共有三种,分别为 Sa-Sd (谱加速度-谱位移)、Sa-T (谱加速度-周期)、Sd-T (谱位移-周期)。在通常情况下按照默认的选项为 Sa-Sd,此时显示 Pushover 曲线时,竖轴为谱加速度,要注意谱加速度的单位与中国反应谱中的地震影响系数不同,两者之间相差重力加速度值。

#### 3.2 需求谱定义

需求谱的定义可以通过两种办法来确定,一种为导入函数,另外一种为自定义 Ca、Cv 系数。

当通过函数来定义需求谱时,需先定义代表相应地震水准的反应谱函数。在函数中选择 定义好的反应谱函数,在 SF 项填写重力加速度值(填写此数值时注意单位,如果单位为 m, 则填写 9.806,如果单位为 mm,此值则为 9806),使中国反应谱函数的竖向坐标从地震影 响系数转换为加速度。本例即采用这种方法,参见第5节。

如果采用自定义系数,需要将中国反应谱函数和美国反应谱函数的对应关系找出,再计

算 Ca、Cv 值。其近似关系如下所示:

当 
$$0.1s < T \le T_g$$
 时,  $2.5C_a = \eta_2 \alpha_{\text{max}}$ ,  $T_g = C_v / (2.5C_a)$ 

当
$$T_g < T \le 5T_g$$
时,  $C_v / T = \left(\frac{T_g}{T}\right)^v \eta_2 \alpha_{\max}$ ,  $T_g = C_v / (2.5C_a)$ 

当
$$5T_g < T \le 6s$$
时, $C_v / T = [\eta_2 0.2^v - \eta_1 (T - 5T_g)]\alpha_{\max}$ , $T_g = C_v / (2.5C_a)$ 

本例中,施加 Pushover 工况方向的主振动周期为 T=0.75s,结构阻尼比 $\varsigma$ =0.03,根据

抗震规范 5.1.5 条知 
$$\gamma = 0.9 + \frac{0.05 - \zeta}{0.3 + 6\zeta} = 0.942$$
,  $\eta_2 = 1 + \frac{0.05 - \zeta}{0.08 + 1.6\zeta} = 1.156$ , 则

$$C_{v} = \left(\frac{T_{g}}{T}\right)^{\gamma} \eta_{2} \alpha_{m} T_{x} = 0.47, \quad C_{a} = C_{v} / (2.5T_{g}) = 0.378$$

#### 3.3 阻尼参数定义

当结构承受地震荷载作用而进入到塑性阶段后,阻尼发挥作用。阻尼可看作是黏滞阻尼 和滞回阻尼的组合。黏滞阻尼是结构本身的固有阻尼,而滞回阻尼则和滞回环内的面积相关。 结构的等效阻尼可用如下方程表示:

$$\beta_{eff} = k\beta_0 + \beta_c$$

其中, $\beta_{e\!f\!f}$ 为结构等效粘滞阻尼, $\beta_0$ 为滞回阻尼经计算得到的等效黏滞阻尼, $\beta_c$ 为结构固有的黏滞阻尼。

"**固有+附加阻尼**"项,此处输入的数值结构本身固有的黏滞阻尼,可以按照规范,一般的混凝土结构使用 0.05,钢结构为 0.02~0.03。对应于上式中的 β<sub>c</sub>项。

k是对从理想滞回环得到的等效黏滞阻尼 $\beta_0$ 的折减,根据结构行为类型的不同k的取值不同,结构类型为A时,k=1,表示结构具有良好的耗能能力;结构类型为B时,k=2/3,表示结构具有中等的耗能能力;结构类型为C时,k=1/3,表示结构的耗能能力不佳。

结构行为类型的分类如下表所示,其中,地震动持续时间的长短相当于我国规范中的远近地震。当地震发生时,处于近震地区的结构,地震持续时间相对较短,结构滞回环数量少,结构刚度下降小,滞回环饱满;处于远震地区的结构,地震持续时间相对较长,结构滞回环

数量较多,结构刚度下降较大,滞回环狭窄。

| 震动持续时间 | 新结构 | 现有结构 | 旧结构 |
|--------|-----|------|-----|
| 短      | А   | В    | С   |
| K      | В   | С    | С   |

表 8 结构行为类型

#### 4、其它求解性能点的方法

SAP2000 在 Pushover 分析中除了提供 ATC-40 能力谱求解性能的方法外,还提供了目标 位移法、等效线性化法和位移修正法。

目标位移法对于建立 Pushover 曲线表征结构的弹塑性荷载-位移行为,与能力谱法在本质上是相同的;在给定地震水准作用下求解弹塑性变形需求的方法与能力谱法不同。目标位移法的基本思想是建立控制点的目标位移,一般将建筑顶层的质量中心定为结构的位移控制点。

等效线性化方法的假定: 非线性 SDOF 体系的最大位移可以通过线弹性 SDOF 体系来 估算,线弹性 SDOF 体系的周期和阻尼比采用等效周期和等效阻尼比,大于非线性 SDOF 体系的初始值。改进后的等效线性化方法仍基于 ATC40 规定的流程,但改进了等效周期和 等效阻尼比的计算公式,并且引入了新的技术来求取性能点。

位移修正法是对目标位移法的修正,主要是对求解公式中的系数提出了改进的意见。

能力谱法和等效线性化方法都需要对应不同阻尼比的多条反应谱曲线,而目标位移法仅 使用阻尼比为 0.05 的反应谱曲线。

目标位移法和等效线性化法都使用了经验公式,且这些经验公式通过了大量动力分析的 校准。

能力谱方法使用了割线周期和阻尼比,而不是弹性周期和 0.05 的阻尼比。除了这一点, 能力谱方法可以被视为线性结构反应谱的扩展应用。

#### 参考文献

- 1、FEMA356
- 2、Pushover分析在建筑工程中的应用