集成化的通用结构分析与设计软件

SAP2000®

案例教程

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层, 100043

版权

计算机程序 SAP2000 及全部相关文档都是受专利法和版权法保护的产品。全球范围的所有权属于 Computers and Structures, Inc.(中文版版权同属于北京筑信达工程咨询有限公司)。如果没有 CSI 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使用或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19 号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©,2014.

说 明

本教程将通过具体的案例,介绍如何应用 SAP2000 处理一些典型问题。"模型概况" 是对案例的简单介绍;"主要工作流程"是对常规建模过程的描述;"要点详解"是对 相关一些软件应用技术的详细说明。本教程不涉及软件操作的详细讲解,相关内容请参 考 SAP2000 联机帮助或相关使用手册。

我们将持续丰富案例种类。对于本教程的内容和需要增加的案例类型,欢迎您提出 您的意见和建议,不胜感谢!联系方式如下:

技术热线: 010-6892 4600 - 200

技术邮箱: support@cisec.cn

北京筑信达工程咨询有限公司

单拉索点支式幕墙结构

本教程旨在指导读者在 SAP2000 中为单拉索点支式幕墙结构创建模型,并完成相关的 属性指定、加载、分析及后处理工作。在具体操作过程中,使读者熟悉并掌握 SAP2000 的 的诸多功能,如:单拉索的模拟、预拉力的施加、非线性求解等等。

依本教程执行操作,可创建如图1所示模型:

图1 单拉索点支式幕墙结构

工程概况

如图 1 所示,该幕墙结构由两段直墙段和一段弧墙段组成,并且在竖直平面内,结构由 下向上逐渐向外倾斜。结构的基本布局如下:

- ▶ X方向直墙长度 20m
- ▶ Y方向直墙长度 20m
- ▶ Z方向幕墙高度 20m
- ▶ 1/4 弧墙半径:底部 20m,最高处 22m
- ▶ 玻璃面板尺寸: 2m x 2m
- ▶ 爪件长度: 0.5m

计算模型采用的材料属性数据如下:

- ➤ 不锈钢 Steel
 - 容重 78.5kN/m³;弹性模型 135GPa; 泊松比 0.3;线胀系数 1.2x10⁻⁵
- ➤ 玻璃 Glass
 - 容重 25.6kN/m³;弹性模型 72GPa; 泊松比 0.21;线胀系数 1.0x10⁻⁵

各构件的截面尺寸如下:

- ▶ 拉索直径: 30.5mm
- ▶ 爪件直径: 15mm
- ▶ 玻璃面板厚度: 15mm

支座约束如下:

- ▶ 拉索在 0m、8m、14m、20m 高度处设置铰支座
- ▶ 玻璃面板在底部设置铰支座

计算荷载如下:

- ▶ 预拉力: 300kN
- ▶ 结构自重
- ▶ 风荷载: 1.0kN/m²
- ▶ 地震作用
- ▶ 温度作用:升温 40℃

主要工作流程

步骤1 新建轴网

在 SAP2000 中,轴网是一种辅助几何建模的重要工具。精心布置的轴网系统,有助于快速而准确的绘制几何模型。根据前述单拉索点支式幕墙结构的几何特点,可以先绘制 X-Z 剖面中的框架对象,然后利用带属性复制和拉伸功能,完成整个几何建模。

因此,对于轴网的定义,X方向应考虑爪件的长度和幕墙的倾斜,Z方向则考虑幕墙的 高度和玻璃面板的尺寸,Y方向则无过多要求。具体操作如下:

- 1. 启动程序,创建新模型
 - a) 选择新模型初始化的单位制: KN, m, C
 - b) 选择模板: 轴网
- 在快速网格线对话框中,定义轴网线数量、轴网间距以及第一个网格位置,如图 1-1 所示:
 - a) X方向的轴网间距 0.5m,用于考虑爪件的长度
 - b) X 方向的轴网线数量为 6, 用于考虑竖向幕墙的倾斜(半径扩大为 22m)
 - c) 第一个网格位置 19.5m,用于考虑地面上幕墙半径为 20m(0.5+19.5=20)

笛卡尔	柱面坐标
坐标系统名称	
GLOBAL	
轴网线数量	
X方向	6
Y方向	2
Z方向	11
轴网间距	
X方向	0.5
Y方向	2
Z方向	2
第一个网格位置	
×方向	19.5
Y方向	0.
Z方向	0.
确定	取消

图 1-1 快速网格线对话框

3. 基于上述定义,新建轴网如图 1-2 所示:

A SAP2000 v16.10 Utimate C - Curtain2	
	The least of the first of the second se
·····································	◆今日「FET要好。"\$P\$ 是反戰的法 Y 通问> [h ↓ FEM 图 7]
Norman - x-2 + a 0 ++2	× 3-0 KE
1	
• • • • • • • • • • •	
×	
×	
x"	
5	
K	
×	
-14	
н	
2	
	• 30×
****	1774
1 点 适中	124 509 12.000 121 835 [GLUBAL • [135, e, C •

图 1-2 新建轴网系统

步骤 2 定义材料和截面

- 1. 定义不锈钢(Steel)和玻璃(Glass)两种材料属性,具体材料参数图 2-1 所示:
 - a) 国家或地区: User
 - b) 材料类型: Other

材料属性	容重(kN/m³)	弹性模量(GPa)	泊松比	线膨胀系数
不锈钢	78.5	135	0.3	1.2×10 ⁻⁵
玻璃	25.6	72	0.21	1.0×10 ⁻⁵

图 2-1 材料属性数据

- 2. 定义拉索(Cable36)和爪件(Clew)两种截面属性
 - a) 使用混凝土类型的圆形截面
 - b) Cable36: 直径 30.5mm, 材料 Steel
 - c) Clew: 直径 15mm, 材料 Steel
- 3. 定义玻璃面板(Panel)截面属性
 - a) 薄壳、厚度 15mm、材料 Glass

步骤3 创建几何模型

如步骤 1 中所述,根据模型的几何特点,本教程先绘制 X-Z 剖面中的框架对象,然后利用带属性复制和拉伸功能,完成整个几何建模。具体操作如下:

3.1 绘制 X-Z 面内的框架

- 1. 将平面视图切换为 X-Z 平面 @ Y=0
- 2. 绘制两根平行的贯穿上下的倾斜拉索,截面属性选择 Cable36
 - a) 下部节点 X 坐标分别为 19.5m 和 20.0m
 - b) 上部节点 X 坐标分别为 21.5m 和 22.0m
 - c) 右侧拉索没有意义,只是用于辅助创建玻璃面板,后续会将其删除
- 3. 选中上述两根拉索,使用编辑菜单下的**分割框架**命令,对其进行分割。后续将利用 生成的内部节点创建爪件
 - a) 分割方法选用:按与当前坐标系中可见轴网平面交点分割
 - b) 轴网平面选用: XY Planes at Visible Z Grids
 - c) 分割完成后, 在视图选项中关闭节点的不可见, 便于后续查看节点
- 4. 绘制 Z=0 平面上的水平爪件,截面属性选择 Clew
- 5. 应用带属性复制功能,将上述爪件在 Z 方向进行平移复制
 - a) 平移增量 dx=2/10=0.2
 - b) 平移增量 dz=2
 - c) 增加次数=10

節這达

图 3-1 带属性复制(平移)

完成以上操作,几何模型如图 3-2 所示:

图 3-2 X-Z 平面内的框架模型

3.2 绘制面板

- 1. 利用多边形选择方法,选中右侧拉索(10个框架、11个节点)
- 2. 应用带属性复制功能,将选中对象绕 Z 轴进行转动复制
 - a) 该复制操作生成的框架用于生成 X 方向的玻璃面板
 - b) 增量数据:增加1次,角度为90°
- 3. 对右侧拉索进行拉伸操作,分别生成 Y 向和弧面的玻璃面板 (Panel)
 - a) 平移拉伸: dy=-2, 增加 10 次, 不删除源对象

- b) 转动拉伸:绕 Z 轴转动,角度 5.625°,增加 16次,删除源对象
- 4. 选择之前通过转动复制生成的框架,对其进行拉伸操作,生成X向的玻璃面板(Panel)
 - a) 平移拉伸: dx=-2,增加 10 次, **删除源对象**

++ (+ () + + + + + + + + + + + + + + + +	拉伸线生成面
拉伸线生成面 平移 转动 高级 添加对象的属性 + Panel ▼ 増里数据 dx 0 dy -2 dz 0.	12/中线主成回 平移 養劫 高级 ☆加以才象的属性 + Panel ▼ 伝統转动 ○ × ○ Y ○ Z - 绕点旋转 点 × □. 点 Y □.
	增重数据 角度 5.625 数 16 总升高 [Z] 0. 「剛除源对象 确定 取消

图 3-3 拉伸线成面 (左图为平移,右图为转动)

完成以上操作,几何模型如图 3-4 所示:

图 3-4 面板和平面框架模型

3.3 绘制全部框架

- 选择 X-Z 平面内的全部拉索和爪件框架,通过带属性复制生成 Y 向的和弧面的拉索 和爪件
 - a) 平移拉伸: dy=-2, 增加 10 次, 不删除源对象
 - b) 转动拉伸:绕 Z 轴转动,角度 5.625°,增加 16次,不删除源对象

复制			
平移	转动	镜像	
绕线旋转			
〇 平行于×	○ 平行于Y	● 平行于 Z ○ 3D 約	ŧ
线与 XY 平面相	較		
× 0.	Y 0.		
		选项	
数 16		修改/显示重复选项	
角度 5.6	16 自	的17选择的活动窗	
		刪除源对象	
		TTR SIL	

图 3-5 带属性复制(转动)

- 2. 切换视图 X-Z 平面 @ Y=O 中,选择平面中的所有拉索和爪件框架,通过带属性复制生成 X 向的拉索和爪件
 - a) 平移拉伸: dx=-2, 增加 10 次, 不删除源对象

完成本步骤的所有操作后,几何模型如图 3-6 所示:

图 3-6 单拉索点支式幕墙结构模型

步骤 4 属性指定

- 如图 3-4 所示,对于模型右侧的直墙部分,其颜色与其余墙体不同,这是由于外法 线方向不同造成的。如果风荷载以表面压力的方式进行加载,则壳单元外法线的方 向必须统一,否则容易造成加载方向错误。
 - a) 在 3D 视图中选择 Y 方向的直墙
 - b) 在指定菜单下选择反转局部 3 轴,与其他墙体部分保持一致的外法线方向
- 2. 对幕墙、拉索、爪件分别定义为组,便于后续的选择操作
- a) 分别通过截面类型选择相应对象,然后指定为相应的组
- 3. 通过组选择拉索,修正拉索两个方向的抗弯刚度为0.1
- 4. 通过组选择爪件,释放起始端的两个弯矩

框架属性/刚度修正参数		指定框架释放		
○分析属性-PAI度修改 橫載的轴向面积 方向2的抗剪面积 方向3的抗剪面积 扭力常数 围绕2轴的惯性矩 围绕3轴的惯性矩	1 1 1 1 0.1 0.1	 框架释放 轴向荷载 剪力 2(主轴) 剪力 3(次轴) 扭矩 弯矩 22(次轴) 	 起点 終点 □ □ □ □ □ □ □ □	振突部分固定準 読点
质里重	1	弯矩 33(主轴) □ 无释放		90 月 単位 KN, m, C ▼
确定	取消		确定	

图 4-1 框架刚度修正

图 4-2 框架端部释放

步骤 5 施加荷载

- 切换为 X-Y 视图,通过组选择拉索后单独显示,在不同的标高处施加支座约束
 a) 施加支座的标高: Z=20m、14m、8m、0m
 - b) 只约束 3 个平动自由度
- 2. 通过组选择面板后单独显示,在 Z=0 的 X-Y 平面内约束所有节点的平动自由度
- 3. 定义荷载模式,如图 5-1 所示:

荷载模式	* =1	自重	自动侧向		点击: 添加新的荷载模式
1月取保武-台州 Temp		- 0			修改荷载模式
DEAD Pre Windx Windy Ou	DEAD OTHER WIND WIND OUAKE	1 0 0	None None Chirose 2010	•	修改侧向荷载模式 删除荷载模式
Qy Temp	QUAKE	0	Chinese 2010	•	显示荷载模式注释
					确定

图 5-1 定义荷载模式

4. 通过组选择拉索, 施加 Pre 荷载模式下的温度荷载-253.47℃, 如图 5-2 所示:

荷载模式名称	+	Pre
类型		选项
● 温度		○ 添加到现有荷载(A)
○ 2-2温度梯度		 替换现有荷载(E)
C 3-3温度梯度		○ 删除现有荷载(D)
温度		
● 通过单元		
温度	-253.47	
○ 通过节点样式		确定
样式	-	
17-34 J		取消

图 5-2 施加温度荷载

- 5. 恢复选择拉索,施加 Temp 荷载模式下的温度荷载 40℃
- 6. 切换 3D 视图下的 X-Y 平面视图,便于选择面板施加风荷载
 - a) 选择除平行于 X 轴外的面板, 施加 Windx 荷载模式下的表面压力荷载-1kN/m²

節這达

b) 选择除平行于 Y 轴外的面板, 施加 Windy 荷载模式下的表面压力荷载-1kN/m²

图 5-3 施加风荷载 (左 Windx; 右 Windy)

- 7. 定义荷载工况,所有静力工况设置为非线性分析,考虑 P- Δ 和大位移效应
 - a) Pre: 零初始条件
 - b) Dead: 初始条件继承 Pre 工况,比例系数 1.2
 - c) Modal: 模态分析,初始条件继承 Pre 工况
 - d) 其余:初始条件继承 Dead 工况,比例系数(分项系数)取值分别为:
 - i. 风荷载 1.4
 - ii. 地震作用 1.3
 - iii. 温度作用 1.2
- 8. 由于非线性工况**不符合线性叠加原理**,因此对于各种荷载组合应在同一个荷载工况 中施加多个荷载模式,并考虑相应的组合系数
 - a) X 方向的组合工况 ComX: 初始条件继承 Dead 工况,比例系数取值为:
 - i. 风荷载 Windx: 1.4 x 1.0 = 1.4
 - ii. 地震作用 Qx: 1.3 x 0.6 = 0.78
 - iii. 温度作用 Temp: 1.2 x 0.2 = 0.24
 - b) Y方向的组合工况 ComY: 初始条件继承 Dead 工况,比例系数取值为:
 - i. 风荷载 Windy: 1.4 x 1.0 = 1.4
 - ii. 地震作用 Qy: 1.3 x 0.6 = 0.78
 - iii. 温度作用 Temp: 1.2 x 0.2 = 0.24
 - c) 根据设计需要,还可以定义任意的组合方式。

💢 荷载工况树		
展开全部 折叠全部	右击该项编辑相关荷载工况	🗆 模拟阶段施工
PRE (NonStatic) DEAD (NonStatic) DEAD (NonStatic) WINDX (NonS WINDY (NonS WINDY (NonS QX (NonStatic) QY (NonStatic) QY (NonStatic) COMX (NonSt	odal) tatic))) tic) atic) atic)	

图 5-4 荷载工况树

步骤 6 后处理

1. 查看结构周期和振型图

图 6-1 结构振型图

- 2. 查看挠度值, 校核刚度
 - a) 表格查询中进行排序快速查看最大值
- 3. 查看拉索轴力, 校核强度
 - a) 表格查询中进行排序快速查看最大值

要点详解

1 几何非线性

对于线性的荷载-位移关系(如右图所示),在 计算求解时具有显著的优势,即:

- 1. 刚度矩阵只组装及求逆一次
- 2. 多种工况可以进行线性叠加

然而,上述的线性假定只有在结构承受的荷载和结构产生的位移都较小的情况下才成立。 在具体计算求解时,可以根据结构原始(变形前)几何建立平衡方程。然而,当荷载较大或 位移较大时,平衡方程的建立与线性假定不同,这就是所谓的几何非线性效应。

几何非线性也称二阶几何效应,主要包括两大类:大荷载效应和大位移效应。

- 大荷载效应考虑部分结构的变形,使用较大的内力或应力生成几何刚度,用以修正 结构的整体刚度。虽然结构的位移和变形可能很小,但结构刚度变化显著!而
 P-Delta 效应则特指较大的正应力对横向弯曲和剪切的影响
- 大位移效应考虑全部结构的变形,由于结构的位移或转动较大,需要使用结构变形 后的几何构型形成新的结构刚度矩阵。虽然应力或内力可能很小,但结构刚度变化 显著!

而在幕墙结构中需要考虑的几何非线性包括:

- 1. 拉索的几何非线性: P- Δ 效应和大位移
- 2. 框架的几何非线性: P-△效应
- 3. 面板的几何非线性: P- Δ 效应和大位移

SAP2000 中的几何非线性有三个选项:

- 1. 无: 平衡方程只针对结构未变形的形状
- P-Δ: 平衡方程考虑部分结构的变形形状,结构中存在较大应力,其中,拉力趋向 于抵抗单元的转动并使结构刚化;压力趋向于加剧单元的转动并使结构失稳
- 3. 大位移:平衡方程考虑全部结构的变形形状,具体包括:大的平动和转动

荷载工况名称		注释	荷载工况类型	
ACASE1 设置	定义名	修改/显示	静力	▼ 设计
初始条件			分析类型	
☞ 零初始条件·从零初始应力状	态开始		○ 线性	
€ 从上次非线性工况终点状态线	继续	Ψ	• 非线性	
重要注释: 当前工况中包	3含前次工况	中荷载	○ 非线性阶段施工	
模态荷载工况			几何非线性参数	
所有施加的振型荷载使用来自工	况模态	MODAL -	☞ 无	
施加的荷载			C P-4	
荷载类型 荷载名称	比例系数	¥.	C P-△和大位移	
Load Patterr DEAD	1			
		添加(A)		
		(修改(M)		
		- 時除(D)		
1 1				
其它参数]	-
施加荷载 全部	『荷 載	修改/显示	确定	
结果保存 仅最	终状态	修改/显示	取消	1
	N1			

2 非线性工况

非线性荷载工况与线性荷载工况的区别很大,主要体现其不可叠加性以及不同非线性工况间的继承关系。

对于荷载工况顺序: A→B, 其中, 工况 A 为工况 B 的前 提; 工况 B 为工况 A 的后续。在一个 SAP2000 模型中可以定 义任意数量的分析顺序, 后续工况的运行将强制前提工况运 行(即使该工况设置为"不运行")。另外, 每个荷载工况 顺序的起始工况必须从零刚度开始。荷载工况的的分析顺序 有三种类型:

- 模态分析→模态叠加法的分析类型(如反应谱分析 或模态时程分析)
- 2. 非线性分析 1→非线性分析 2
- 3. 非线性分析→线性分析

线性工况和非线性的显著区别,主要包括以下几点:

- 1. 结构属性: 刚度、阻尼等
 - a) 线性: 在分析过程中保持不变
 - b) 非线性:随时间、变形、加载而变化
- 2. 初始条件:结构刚度、荷载等
 - a) 线性:零刚度或前提工况的刚度,不继承荷载
 - b) 非线性: 除刚度外, 还继承前提工况的所有荷载、变形、应力等
- 3. 结构响应: 位移、应力、反力等
 - a) 线性: 与承受的荷载幅值成比例
 - b) 非线性: 与承受的荷载不成比例
- 4. 可叠加性
 - a) 线性: 可叠加, 可以得到有意义的组合结果
 - b) 非线性:不可叠加,如需组合,应在同一个工况中施加多个荷载

因此,对于需要考虑几何非线性的幕墙结构分析而言,需要注意非线性荷载工况的定义。 各种荷载的分项系数和组合系数,都需要在荷载工况的定义中通过缩放系数加以体现,而不 能像线性工况般在荷载组合中考虑,具体定义方法请参照本文前述的步骤5中的相关内容。

3 预应力荷载

对于框架单元的预应力荷载,基本上可以通过两种方法加以考虑:应变荷载和温度荷载。 应变荷载的施加,如下图所示:

荷载模式名称	+ DEAD	单位 ▼ KN, m, C ▼
应变荷载 ● 通过对象 ● 通过节点样式		选项 〇 添加到现有荷载(A) ④ 替换现有荷载(B)
分量	Strain11 💌	○ 刪除现有荷载(D)
样式 应变	0.	

記信达

应变荷载与单元的内力/内力矩相对应,如轴向应变对应于轴向拉力和压力,剪切应变 对应于横向剪力等。对于无约束单元,应变荷载只引起单元变形,单元无内力,单元变形与 相应的内力/内力矩引起的变形方向一致。而对于有约束单元:应变荷载引起单元内力,内 力符号与应变相反(如正轴向应变引起轴向压力)。大多数单元的约束往往具有有限刚度, 因此,应变荷载通常同时引起内力和变形。

温度荷载为温度应变荷载,即温度应变=材料热膨胀系数 x 温差。对于静定结构,不产生内力;而对于超静定结构,则产生内力。温度荷载的定义,如下图所示:

框架温度荷载	面温度荷载
荷载模式名称 + 类型 ○ 温度 ○ 温度 ○ 22温度梯度 ● 単位长度的温差	荷载模式名称 + 类型 ○ 温度 ○ 33梯度
 ○ 3-3 温度梯度 温度 通过单元 温度 0. 	温度 单位长度的温差 © 通过单元 温度
ご通过节点样式 样式 東数	 ○ 通过节点样式 样式 ✓ 乘数

轴向温度引起构件的整体伸缩变形;而横向的温度梯度,则引起弯曲变形,如框架单元的局部 2、3 轴方向和壳单元的局部 3 轴,即厚度方向。其中,温度梯度=横向温差/横向尺寸。

因此,可以通过降温法施加预拉力,通过预拉力的大小反算需要降温的温差,计算公式 如下所示:

$N = \varepsilon EA = \alpha \Delta T EA \rightarrow \Delta T = N / \alpha EA$

4 拉索的模拟

拉索属于柔性构件,自然状态下只具有**抗拉**能力,无抗弯、抗剪、抗压能力。SAP2000 中索单元多用于模拟自重作用下的悬链索,而本案例中幕墙结构的单拉索竖向布置,且具有 一定的初始张拉力。基于此,可以采用框架单元模拟拉索,便于更复杂的加载条件。

然而,使用框架单元模拟拉索,需要对 框架的刚度做适当的修正,主要是折减其抗 弯刚度,这可以通过指定对象的**属性修正**实 现,如下图所示:

通常情况下,对于刚度折减,修正参数 <1;而对于刚度放大,修正参数>1。但两 个方向的**抗剪面积**有所不同,当抗剪面积=0 时,代表剪切刚度无穷大,即忽略剪切变形。

另外,某些情况下,需要对框架单元进 行端部释放,如下图所示:

框架属性/刚度修正参数			
	分析属性例度修改		
L	横截的(轴向)面积	1	
	方向 2的抗剪面积	1	
L	方向 3的抗剪面积	1	
L	扭力常数	1	
L	围绕2轴的惯性矩	1	
	围绕3轴的惯性矩	1	
	质里	1	
L	重里	1	
	[M =]	取消	

指定框架释放			
─框架释放	释放框架部分固定弹簧		
轴向荷载	起点 终点		
剪力 2(主轴)			
剪力 3(次轴)			
扭矩			
弯矩 22(次轴)			
弯矩 33(主轴)			
□ 无释放	单位 Kip, in, F 👤		
	[确定] 取消		

SAP2000 中的端部释放功能,除完全刚接外还可以实现部分刚接,只需指定非零的弹簧 刚度即可。另外,在对构件的两端同时指定端部释放时,应注意避免造成不稳定的端部释放,如:

- 1. 两端释放 U1
- 2. 两端释放 U2
- 3. 两端释放 U3
- 4. 两端释放 R1
- 5. 两端释放 R2 及任意一端 U3
- 6. 两端释放 R3 及任意一端 U2

对于幕墙结构中的拉索,在使用框架单元进行模拟时,需要修正抗弯刚度(折减);而 爪件与拉索连接的端点则需要进行端部释放。具体操作可参阅前述步骤4中的相关内容。