集成化的通用结构分析与设计软件

SAP2000 ®

案例教程

北京筑信达工程咨询有限公司 北京市古城西街 19 号研发主楼 4 层,100043

版权

计算机程序 SAP2000 及全部相关文档都是受专利法和版权法保护的产品。全球范围的 所有权属于 Computers and Structures, Inc. (中文版版权同属于北京筑信达工程咨询有限公 司)。如果没有 CSI 和北京筑信达工程咨询有限公司的预先书面许可,未经许可的程序使用 或任何形式的文档复制一律禁止。

更多信息和此文档的副本可从以下获得:

北京筑信达工程咨询有限公司

北京市古城西街 19 号研发主楼 4 层 100043

电话: 86-10-6892 4600

传真: 86-10-6892 4600 - 8

电子邮件: support@cisec.cn

网址: www.cisec.cn

北京筑信达工程咨询有限公司版权所有©, 2016.

L

訊信达

说 明

本教程将通过具体的案例,介绍隔震分析在 SAP2000 中的实现流程,包括隔震支座选型与参数定义,荷载工况设置,结果提取及处理,水平减震系数确定,隔震层校核等。"模型概况"是对案例相关设计条件的介绍;"主要操作流程"是对隔震分析在程序中实现过程的描述;"要点详解"是对程序中相关参数或方法的详细说明。

目前各隔震支座厂家提供的产品参数不尽相同,隔震分析的方法也并不统一,案例中采 用了较为通用的方法,工程师可作为参考,在实际工作中需根据工程实际状况综合考虑选择 合适的方法。

本教程未涉及的软件操作,请参考 SAP2000 联机帮助或相关使用手册。

由于作者时间和水平有限,错误和不足在所难免,希望同仁谅解并指正。

我们将持续丰富案例种类。对于本教程的内容和需要增加的案例类型,欢迎您提出您的 意见和建议,不胜感谢!联系方式如下:

技术热线: 010-6892 4600 - 200

技术邮箱: support@cisec.cn

1	模型概况	1
	1.1 材料属性	2
	1.2 截面信息	2
	1.3 荷载信息	2
	1.4 隔震设计目标	2
	1.5 基本设计参数	2
	1.5 设计原则	3
	1.6 相关设计规范	3
	1.7 隔震设计基本流程	4
2	主要操作流程	5
	2.1 隔震支座的选型及隔震层布置	5
	2.2 水平减震系数确定	16
	2.3 罕遇地震下隔震层校核	33
3	要点详解	41
	3.1 层间剪力	41
	3.2 橡胶隔震器定义	45
	3.3 模态分析	48
	3.4 快速非线性分析(FNA)法	52

SAP2000 隔震结构案例

本教程旨在指导用户利用 SAP2000 完成结构的隔震分析,包括隔震支座的选型和布置、 减震系数的确定及隔震层验算等内容。通过本案例的具体操作,可以使用户了解并掌握用 SAP2000 进行隔震分析的基本流程和操作要点,如支座属性、工况设置、数据提取等。本教 案具有一定代表性,用户在深入了解程序的技术条件后,可根据实际工程情况灵活应用。

1 模型概况

图 1-1 原结构

訊信达

如图 1 所示,本案例工程为混凝土框架结构的建筑物,建筑平面呈矩形分布,沿 Y 向的主梁间设置单根次梁。

建筑物的基本布局如下:

- ▶ X 方向 5 跨, 跨度 6m
- ▶ Y 方向 3 跨, 边跨跨度 4m
- ▶ 结构共 4 层, 各层层高均为 3.6m

1.1 材料属性

- ▶ 混凝土强度等级 C30
- ▶ 纵向受力钢筋 HRB335
- ▶ 箍筋 HPB300

材料的属性均采用默认值。

1.2 截面信息

- ▶ 立柱截面: 700mm×700mm
- ▶ 主梁截面: 700mm×300mm
- ▶ 次梁截面: 600mm×300mm
- ▶ 楼板厚度: 120mm

1.3 荷载信息

- ▶ 恒载:结构自重、楼板均布荷载 3kN/m²
- ▶ 活载: 楼板均布荷载 2kN/m²
- ▶ 地震荷载:依据中国规范 2010 自动施加地震反应谱
 - 分别考虑 X、Y 方向地震作用
 - 地震烈度 8 (0.2g) 度
- ▶ 风荷载:依据中国规范 2010 自动施加
 - X、Y 方向分别定义
 - 基本风压 0.45kN/m², 地面粗糙度 B 类
 - 体型系数 1.3

1.4 隔震设计目标

隔震设计的目标为:

- 1) 上部结构水平地震作用可按降低 1.0 度计算。
- 2) 在罕遇地震作用下,减小构件的塑性损伤,确保结构与人员安全。

1.5 基本设计参数

建筑结构设计使用年限: 50年 抗震设防类别:乙类

- 抗震设防烈度:8度(0.2g)
- 设计地震分组: 第二组

场地类别:Ⅲ类

场地特征周期: 0.55s

多遇地震加速度时程最大值: 70cm/s²

设防地震加速度时程最大值: 200cm/s² 罕遇地震加速度时程最大值: 400cm/s² 多遇地震下地震影响系数 $\alpha_{max} = 0.16$ 设防地震下地震影响系数 $\alpha_{max} = 0.45$ 罕遇地震下地震影响系数 $\alpha_{max} = 0.90$

1.6 设计原则

本例采用的橡胶隔震支座,在选择其直径、个数和平面布置时,主要考虑了以下因素:

(1)根据《抗规》12.2.3 条,在重力荷载代表值下橡胶隔震支座的竖向压应力不应超过乙类建筑的基准面压限值 12MPa。

(2) 在罕遇地震作用下,隔震支座不宜出现拉应力,当少数隔震支座出现拉应力时, 其拉应力不应大于 1MPa。

(3)隔震支座的水平位移限值不应超过其有效直径的 0.55 倍和各橡胶层总厚度 3 倍 二者的较小值,即 1/θ≤min(0.55D, 3Tr)。

(4)考虑到扭转影响,结构周边位移可能会稍大,铅芯隔震支座尽可能布置在周边。 天然橡胶支座布置在中间,有铅芯支座和天然支座混用,可以提高隔震效率。

1.7 相关设计规范

1)	《建筑结构可靠度设计统一标准》	GB 50068-2001
2)	《建筑结构荷载规范》	GB 50009-2012
3)	《混凝土结构设计规范》	GB 50010-2010
4)	《建筑工程抗震设防分类标准》	GB 50223-2008
5)	《建筑抗震设计规范》	GB 50011-2010
6)	《叠层橡胶支座隔震技术规程》	CECS126:2001
7)	《橡胶支座第3部分:建筑隔震橡	胶支座》 GB20688.3-2006

節信达

1.8 隔震设计基本流程

隔震设计采用分部设计法,即把整个隔震体系分成隔震层、上部结构、下部结构和基础 设计四个部分分别进行设计。

隔震层设计:隔震层的强度、稳定性设计及隔震体系在罕遇地震作用下的验算。

上部结构设计:计算水平地震作用时,水平地震影响系数的最大值可采用水平减震系数 与抗震设计的水平地震影响系数最大值的乘积,竖向地震影响系数最大值不应降低。 下部结构设计:当隔震层以下有墙、柱等结构时,其地震作用和抗震验算,应采用罕 遇地震下隔震支座底部的竖向力、水平力和力矩进行计算。

基础设计:基础设计时不考虑隔震产生的减震效应,按原设防烈度进行抗震设计。

本案例主要介绍利用 SAP2000 软件实现隔震层设计及水平减震系数的确定。工程师可 在此基础之上,完成其它部分设计。

2 主要操作流程

隔震结构分析主要包含以下三部分:

- 隔震支座选型及隔震层布置:对原结构进行分析,根据计算结果及隔震设计目标完成隔震支座的规格数量选取及隔震层布置。
- 2) 减震系数计算:对设防烈度下的隔震模型进行分析,确定减震系数。
- 隔震层验算:对罕遇地震下的隔震模型进行分析,验算支座相关参数是否满足要求。
 若不满足,需微调隔震支座的参数,重新进行计算,直至满足条件为止。

2.1 隔震支座的选型及隔震层布置

2.1.1 质量定义

在 SAP2000 程序中,质量定义通过质量源来实现,质量数值应与规范中的重力荷载代 表值相对应。定义质量源的操作为:点击菜单定义>质量源>修改/显示质量源,本例中采用 的具体参数见图 2-1,与中国规范相对应。

🔀 质量源数据			- 0 - X
质量源的名称	: [MSSSRC1	
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			
□ 单元自身质	5里和附加质重		
☑ 指定荷载植	東式		
。荷载模式的质量	振断		
荷载	重式	乘数	
DEAD		1.	
DEAD		1.	添加
LIVE		0.5	4835
			刪除
	确定		

图 2-1 质量源

2.1.2 分析工况定义

本节需要对原结构进行设防地震下的反应谱分析和弹性时程分析,以得到相关的结构响 应数据来估算支座尺寸和总水平屈服力。

統信达

定义反应谱函数

在定义反应谱工况之前,需要定义用于反应谱分析的反应谱函数。命令为:定义>函数> 反应谱,选择 Chinese2010,点击添加新函数,在弹出的对话框中输入相应的地震参数,见 图 2-2。

图 2-2 反应谱工况

定义时程函数

根据《建筑抗震设计规范》(GB 50011-2010)第 5.1.2 条的规定,采用时程分析法时, 应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实 际强震记录的数量不应少于总数的 2/3。

本例中选用 3 组波进行计算分析,其中两组天然波 EL-centro 波、CPC 波和一条按抗震规范反应谱合成的人工 Ren 波,3 条地震波的波形曲线见图。在结构进行设防烈度和罕遇烈度下分析时,地震波的幅值分别调整到设防烈度地震和罕遇地震水平,并取 3 条波作用下结构反应的包络值作为时程分析的代表值。

EL-Centro 波:

Ren 波:

图 2-3 地震波反应谱与规范反应谱对比图

定义时程函数的命令为: 定义>函数>时程,在选择函数类型下拉列表中选择 From File, 点击**添加新函数**,通过以下三步操作可完成地震波定义。

2 定义时程函数	x
函数 CPC-200 EL-200 Ren-200 UNIFTH	 选择添加函数类型 From File ▼ 点击: 添加新函数… 修改/显示函数… 一 删除函数 → <

統信达

internationy address.	▼
函數名称	EL-200
🛤 🖉 Step 1 🖌 🦳 🚽	数值是:
文件名 浏览	○ 时间与函数值
d:\1_工作盘\调波\el-200gal.txt	函数值等问题于 0.02
	格式类型
每分型100m的20000000000000000000000000000000000	
00110002019H08-9-10	
每余线的点数 1	日 り C マ el-200gal.txt - 写字板
转化为用户定义 显示文件	
款图形 🖊	
Sten3 Step2	▲ 第四 未体 ・11 ・ A ▲ 崔 提 三 * 注 * ● 約 直找
	11 11 11 11 11 11 11 11 11 11 11 11 11
and the second	
	■ EL-Centro 40s 0.02 200gal设防地震
	-0.819432251
1	-6. 321334504
泉示图形	-5.911618379
	-5.150/17/0/3
确定	-7.023705004
	-8.311384255
	-7. 491952005
	-6.438396254
	-4.975124378
	-4. 975124378
	-1.0 0014400
	-11. 35498976
	-9.482001756
	-8.428446005
	-6. 321334504
	-4. 799531753

图 2-4 定义时程分析工况

步骤 1: 点击"浏览"选项,找到事先准备好的地震波文件,将其导入模型中;

步骤 2: 通过"显示文件"来查看地震波文件的内容,并根据地震波文件的格式定义对话框中相关参数,帮助程序识别地震波文件数据,生成地震波。

步骤 3: 点击"转化为用户定义",可防止因地震波文件的移动、修改、删除等原因导致时程函数的丢失。

重复以上步骤完成三条地震波的定义。

定义反应谱工况

考虑 X 方向和 Y 方向的地震作用,分别定义对应方向的反应谱工况。

X方向反应谱工况定义:点击菜单定义>荷载工况>添加新的荷载工况,在弹出的对话框 中输入相关参数,详见首先定义x方向的反应谱工况,具体操作见图 2-5。

	1				_ 户操作:	
前载工况的名称 		注意	荷载工况的类型		添加新的荷載工	况
Respon-x	设置目定义名	修改/显示 …	Response Spectrum	▼ 设计…	复制荷载工况	
最型组合			方向组合		修改/显示荷载工	况
0 CQC	GMC f1	1.	SRSS		mino tate Tri	
SRSS	GMC f2	0.	 (a) (40)(5) (b) (40)(5) (c) (40		0099/11/9 #%12/	<i>r</i> u
 98x71且 00000 	周期 + 刚性 类型	SRSS -	比例系数		示荷载工况	
O NRC 10%			质重源		見示荷載工况相	8t
 図求和 			Previous (MSSSRC1)			
 用于提取振型的模态. ● 标准 - 加速度荷载 ● 三級 - 位移慣開荷 	I况 献	MODAL				401
用于提取振型的模态。 标准 - 加速度荷载 一高级 - 位移惯里荷 動加的荷载	I况 戦	MODAL V				40.11
用于提取振型的模态。 ● 标准 - 加速度荷载 ○ 高级 - 位移惯里荷 助的荷载 荷载类型 荷 物速度	12況 戦 戦名称 函数	MODAL				
用于提取振型的模态。 ● 标准 - 加速度荷载 ● 高级 - 位移惯量荷 動的荷载 荷载类型 荷 加速度 01 0000	工況 载 载名称 <u>函数</u> ▼ spec-mid	MODAL • 比例系数 • 9.8				
田子提取課題的模态。 ● 标准 - 加速度荷載 ● 高級 - 位移慣里荷 西加的荷載 荷載类型 荷載类型 「加速度 U1 Accel U1	工況 载 载名称 函数 ▼ spec-mid spec-mid	MODAL - 比例系数 9.8 9.8				
 ● 标准 - 加速度荷载 ● 标准 - 加速度荷载 ● 高级 - 位移慣里荷 ● 商载类型 荷 ⑦ 前载类型 荷 加速度 U1 (Accel U1) 	I兄 载 载 <u>名称 函数</u> Spec-mid Spec-mid	MODAL - 比例系数 9.8	运加 修改			
 ● 标准 - 加速度荷载 ● 高级 - 位珍惯里荷 ● 高级 - 位珍惯里荷 ● 西加的荷载 ● 荷载类型 ● 加速度 U1 Accel U1 	I兄 戦 戦名称 回動 × spec-mid spec-mid	MODAL	查加 修改 靜除			
● 标准 - 加速度荷载 ● 标准 - 加速度荷载 ● 高級 - 位移債單荷 西助的荷载 荷载类型 荷 加速度 U1 Accel U1 日 最示高級的荷载義	I兄 戦 載名称 <u>回教</u> ▼ spec-md	MODAL ▼ 比例系数 9.8 9.8	运加 修改 剛除			427
Hard Factors Hard Factors F	I兄 戦 載名称 <u>節数</u> ▼ spec-md spec-md	MODAL - 比例系数 9.8	查加 修改 ●●●●●除余			

图 2-5 定义 X 向反应谱工况

注意:对话框中**比例系数**是指重力加速值,填写数值时注意与模型单位一致,如图所示,当系统的主单位为 m 时,此处输入 9.8。

Y方向反应谱工况定义:选中定义好的 Respon-x 工况,点击"**复制荷载工况**",修改工 况名称为 Respon-y、荷载作用方向为 U2,如图 2-6 所示,即可完成 y 方向的反应谱工况的 定义。

载工况 荷载工况的名称	荷载工况的类型	用户操作:
DEAD	线性静力	
IVE	振空 <u>线性静力</u>	复利何戰上况…
Respon-x Respon-y	反应谱	◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎
L-x L-y	线性模态分析 线性模态分析	■ 删除荷载工况
CPC-x	线性模态分析	●
Ren-x	线性模态分析	
Ren-y	线性模态分析	32/11/34%_2/6/9/···
		福完即消
		NR1AE 47.773
荷载工况数据 -反	应谱	
荷载丁况的名称	(注意	荷载于况的类型
Respon-y	设置自定义名 修改/显示	Response Spectrum ◆ 设计
振型组合		方向组合
OD 0	GMC f1 1.	SRSS
SRSS	GMC f2 0	CQC3
- 1 March 1 Ma	Olifo 12 Ol	(m) \$60.011 p
 绝对值 	周期 + 刚性 类型 SRSS 、	 ● 絶对値 比例系数
 ○ 绝对值 ○ GMC ○ NPC 40% 	周期 + 刚性 类型 SRSS 、	 ○ 絶対追 比例系数 Б單源
 绝对值 GMC NRC 10% 双求和 	周期 + 刚性 类型 SRSS 、	 ● 绝对值 比例系数 ▶ 所重源 Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工况 	周期 + 刚性类型 SRSS 、	◎ 绝对值 比例系数 <u>质量源</u> Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工况 用于提取振型的 	周期+刚性类型 SRSS 、 開調+RM性类型 MODAL	◎ 绝对值 比例系数 反量源 Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工況 用于提取振型的 ● 标准 - 加速期 	周期+刚性类型 SRSS 、 開期+刚性类型 MODAL 該荷载	● \$6\$71自 比例系数 <u>质量源</u> Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工况 用于提取振型的 ● 标准 - 加速則 ● 高级 - 位移性 	周期 + 内性 类型 SRSS 、 周期 + 内性 类型 SRSS 、 時積态工況 MODAL 度荷载 房里荷载	● 绝对值 比例系数 Frevious (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工況 用于提取振型的 每 标准 - 加速則 高級 - 位移性 施加的荷载 	周期 + 内性 类型 SRSS 周期 + 内性 类型 MODAL 度荷戦 環理荷戦	● 绝对值 比例系数 Frevious (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工況 用于提取振型的 标准 - 加速則 高级 - 位移地 施加的荷载 荷载类型 	周期 + RM性 类型 SRSS	● 39X7值 比例系数 所量源 Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工況 用于提取振型的 ● 标准 - 加速度 高级 - 位移的 施加的荷载 荷载类型 加速度 	B期 + R州性 类型 SRSS 、 周期 + R州性 类型 SRSS 、 関連荷戦 荷載名称 回数 比例系数 U2 ▼ spec-mid ▼ 9.8	● 39X7值 比例系数
 绝对值 GMC MRC 10% 双求和 模态荷载工況 用于提取振型的 ● 标准 - 加速現 ● 高级 - 位移的 施加的荷载 荷载类型 加速度 Accel 	B期 + PM性 类型 SRSS → 周期 + PM性 类型 SRSS → 資荷载 實單荷载 位2 ▼ spec-mid ▼ 9.8 U2 spec-mid ▼ 9.8	● 39X7值 比例系数
 绝对值 GMC NRC 10% 汉求和 煤态荷载工況 用于提取振型的 标准 - 加速度 高級、位移性 施加的符載类型 加速度 Accel 	周期 + PM性 类型 SRSS → 周期 + PM性 类型 SRSS → 障荷戦 費単荷戦 U2 ▼ spec-mid ▼ 9.8 U2 spec-mid ♥ 9.8	● 3937道 比例系数 <u>所重源</u> Previous (MSSSRC1)
 绝对值 GMC NRC 10% 双求和 模态荷载工況 用于提取振型的 新准 - 加速風 高級 - 位移性 施加的荷载 荷载类型 加速度 		● 3937道 比例系数 质量源 Previous (MSSSRC1) ▼
 绝对值 GMC NRC 10% 双求和 環末和 用于提取振型的 标准 - 加速度 高級,位移代 施加的符載类型 加速度 Accel 	周期 + PM社 类型 SRSS 、 周期 + PM社 类型 SRSS 、 構态工況 (MODAL 意荷載 費単荷載 U2 、 spec-mid 、 9.8 U2 。 spec-mid 、 9.8	● 3937道 比例系数 <u>所重源</u> Previous (MSSSRC1) ▼
 绝对值 GMC NRC 10% 双求和 横态荷载工况 用于提取振型的 标准 - 加速度 高级 - 位移代 施加的符载类型 加速度 Accel 显示高级的 	周期 + PM社 类型 SRSS → 周期 + PM社 类型 SRSS → 開建荷載 置単荷載 U2 → Spec-mid → 9.8 U2 → Spec-mid → 9.8 U2 → Spec-mid → 9.8 U2 → Spec-mid → 9.8	● 3937道 比例系数 所重源 Previous (MSSSRC1) ▼
 绝对值 GMC NRC 10% 汉农和 横态荷载工况 用于提取振型的 标准 - 加速度 高级 - 位移代 荷载类型 加速度 Accel 显示高级的 其他参数 	周期 + PM社 类型 SRSS 、 周期 + PM社 类型 SRSS 、 構造 立 兄 (MODAL 度荷载 貫量荷载 U2 ▼ spec-mid ▼ 9.8 U2 ■ spec-mid ▼ 9.8 U2 ■ spec-mid ▼ 9.8	● 9937道 比例系数 所重源 Previous (MSSSRC1) ▼
 绝对值 GMC NRC 10% 双求和 項求和 第二律取振型的 有:维 - 加速度 高级 - 位移代 随加的荷载类型 加速度 Accel 显示高级的 其他参数 振型阳尾 	周期 + PM社 类型 SRSS → 周期 + PM社 类型 SRSS → 開建荷载 置型荷载 U2 ◆ spec-mid ◆ 9.8 U2 € pec-mid ● 9.8 U2 € pec-mid ● 9.8	● 3937道 比例系数 所重源 Previous (MSSSRC1) ● 添加 修改 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

图 2-6 定义 Y 向反应谱工况

定义时程工况

分别考虑 x、y 方向三条地震波对结构的作用。以 EL-Centro 波 X 向的时程工况为例,点 击菜单定义>荷载工况>添加新的荷载工况,在弹出的对话框中输入相关参数,如图 2-7 所示。

	荷载工况的类型 Time History	! ▼ 设计	X
D始条件 ◎ 零初始条件 - 从零应力状态开始	分析类型 ④ 线性	求解类型 ◎ 振型叠加法	用户操作: 添加新的荷载工况
 □ 从模态封程工兒的结束状态继续分析 ● 重要提示:当前工兒中包含前提工兒中的商载 ■ 世流前载工兒 ■ 用于提取課型的模态工兒 ■ MODAL 	 非线性 时程类型 順态 周期 	◎ 直接积分法	复制荷载工兄 修改/虹示荷载工兄 翻除/荷载工况
防助的領鉄 荷鉄失型 荷鉄名称 回数 比例系数 Accel U1 、 EL-200 001 Accel U3 EL-200 001 日本 新田市時数数 「日本 新田市時数量 2000	添加 修改 册版余	時聖班 Previous (MSSSRC1)	 ①示荷銭工兄村… ○ 銀湾 ○ 銀湾
输出时间步的大小 0 02 其他参数 播型阻尼 Constant at 0.05	/显示	确定 取消	

图 2-7 定义地震时程工况

比例系数:比例系数是对地震波加速度峰值的调整。在本例中,输入的地震波峰值为 200,对应程序使用的单位制 N.m.C,即为 200m/s²。设防地震加速度时程最大值为 200cm/s², 所以比例系数为 0.01,将峰值加速度调整为 200cm/s²。

输出时间步的数量与输出时间步的大小:两值的乘积为地震波总时长,一般情况下,输出时间步的大小取地震波的时间间隔。

重复此步骤,完成3条地震波的6个时程工况定义。

至此,设防地震下的分析工况已定义完毕,如下图 2-8 中红色线框中所示。

定义荷载工况 荷载工况 荷载工况名称 DEAD MDDAL EL-x EL-y CPC-x CPC-y Ren-y Ren-y Bespon-x	荷載工況类型 线性静力 模态 线性静力 模态 线性模态时程 线性模态时程 线性模态时程 线性模态时程 线性模态时程 线性模态时程 线性模态时程 均性模态时程	•	点击:
Respon-x Respon-y	线性模心时柱 反应谱 反应谱	•	显示荷载工况 显示荷载工况树 确定 取消

图 2-8 分析工况

2.1.3 运行分析

点击菜单**分析>设置运行的荷载工况,**在弹出的对话框中点击运行/不运行所有工况,将 所有工况调整为运行状态,如图 2-9 中红框所示,点击运行分析按钮完成分析。

丁语之称	米刑	状态	运行体运	用尸弽11:
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Einished	Pup	运行/不运行该工况
MODAL	53(11)	Finished	Run	
INF	30000000000000000000000000000000000000	Finished	Run	SEAL AG
Respon-x	反应谱	Finished	Run	删除荷载工况的结果
Respon-v	反应谱	Finished	Run	
EL-x	线性模态分析	Finished	Run	
EL-y	线性模态分析	Finished	Run	运行/不运行所有工况
CPC-x	线性模态分析	Finished	Run	删除所有结果
CPC-y	线性模态分析	Finished	Run	demonstration and the
Ren-x	线性模态分析	Finished	Run	
Ren-y	线性模态分析	Finished	Run	显示荷载工况树
析监测选项				二 实时重新
) 見示				运行分析

图 2-9 运行分析

2.1.4 验算地震波

根据规范规定:每条时程曲线计算所得的结构底部剪力均超过振型分解反应谱法计算结果的 65%,3条时程曲线计算所得的结构底部剪力平均值大于振型分解反应谱法计算结果的 80%。

提取地震荷载下基底剪力

提取地震时程分析与反应谱分析的底部总剪力结果进行比较。

通过点击菜单**显示>显示表格>分析结果>结构输出>Base Reactions**,可提取相应工况下的结果。

注意,对于时程工况,可在**修改/显示选项**中选择时程工况结果显示的方式(包络值、 一步一步、最后步),本例中此处选择**包络值**。

图 2-9 查看基底反力

記信达

🔇 Ba	se Reactions										• X
文件	(F) 视图(V)	格式过滤或选	择(M) 选择	(S) 选项(O)							
单位:如注释 过滤:											
	OutputCase	CaseType Text	StepType Text	GlobalFX N	GlobalFY N	GlobalFZ N	GlobalMX N-m	GlobalMY N-m	GlobalMZ N-m	GlobalX m	GlobalY m
•	Respon-y	LinRespSpec	Max	0.26	7100695.82	6.44	75213248.45	85.51	106510433.5	0	
	EL-y	LinModHist	Max	0.2	6418444.58	4.7	61915102.51	62.11	96276664.25	0	
	EL-y	LinModHist	Min	-0.21	-6485336.57	-4.53	-63313887	-59.45	-97280043	0	
	CPC-y	LinModHist	Max	0.29	8804605.1	6	100703242.1	83	132069069.8	0	
	CPC-y	LinModHist	Min	-0.31	-10333636.1	-5.73	-90439845	-85.27	-155004532	0	
	Ren-y	LinModHist	Max	0.27	7521172.87	5.9	74365627.04	74.59	112817589.2	0	
	Ren-y	LinModHist	Min	-0.24	-7662548.11	-5.87	-78893377	-82.87	-114938214	0	
							·				

2	🤇 Base	Reactions										
	文件(F) 视图(V)	格式过滤或选	择(M) 选择	(S) 选项(O)							
	单位: 女 过滤:	注释					Base	Reactions				•
		OutputCase	CaseType Text	StepType Text	GlobalFX N	GlobalFY N	GlobalFZ N	GlobalMX N-m	GlobalMY N-m	GlobalMZ N-m	GlobalX m	GlobalY m
	•	Respon-x	LinRespSpec	Max	7054309.52	0.16	1.43	7.25	74685543.7	42325863.34	0	
		EL-x	LinModHist	Max	4880121.43	0.12	1.18	5.87	46290383.08	34968568.66	0	
		EL-x	LinModHist	Min	-5828093.97	-0.12	-0.94	-4.01	-57435682	-29280732.2	0	
		CPC-x	LinModHist	Max	10489580.07	0.19	1.58	5.41	110089855.6	65449854.55	0	
		CPC-x	LinModHist	Min	-10908307.5	-0.16	-1.67	-7.94	-111242988	-62937490	0	
		Ren-x	LinModHist	Max	6958280.66	0.15	1.32	6.13	69859782.79	47393125.25	0	
		Ren-x	LinModHist	Min	-7898853.18	-0.15	-1.4	-6.44	-79293884	-41749690	0	

图 2-10 不同工况下基底反力结果

为了方便进行数据统计,通过点击菜单**文件>导出当前表格>到 Excel(E)**,可以将表格导出到 Excel,如图 2-11 所示。

💢 Bas	se Reactions									• ×
文件	-(F) 视图(V) 格式过滤	成选择(M) 选择(S) 选项(O)							
	导出当前表格(T)	•	到 Excel(E)	1	Base Rea	ctions				
	显示当前表格(s)	•								
	打印当前表格为文本文件(P		GlobalFX	lobalFY	GlobalF7 G	lobalMX	GlobalMY	GlobalM7	GlobalX	GlobalY
	輸出所有表格(E)		插入 页面布局	ム式 数据	mplage - Microsoft 审阅 视歴	t Excel] 负载测试	团队	6	0 - p X	m
	显示所有表格(D)	☐ ★ 未体	+ 11 +	==_;		- A. 5*	插入 - Σ -	A d	'n	
	打印全部表格为文本文件(F	tothe B I	<u>u</u> · A A			, 📶 👬	删除 - 💽 -	ZI 推序和篇选 音校	和洗杯	
	保存当前表格格式于表格格	* 🍼 🖽 *	<u>≫</u> - <u>A</u> - 👳 -	律律》		·	格式 * 2*	*	*	
	保存全部表格格式于表格格	剪贴板 5	字体 5	对齐方式	5 数字	5 A	紀花	编辑		
	将文件格式套用到当前表格	A4	• (* <i>f</i> x	Respon-x					¥	
	将文件格式在田到所有韦格	1 TARLE: Ba	se Reactions	C	D	E	F	G	н 🔺	<u> </u>
	102011102026/0220/0220/01084416	2 OutputCase	e CaseType	StepType	GlobalFX	GlobalFY	GlobalFZ	GlobalMX	GlobalM	
	添加表格(A)	3 Text	Text	Text	N	N	N	N–n	N-n	
	轮险当前事格(P)	4 Respon-x	LinRespSpec	Max	7054309.52	0.16	1.43	7.25	74685543	
	18/10/2010 (11)	5 EL-x	LinModHist	Max	4880121.43	0.12	1.18	5.87	46290383.	
	关闭对话框(C)	6 EL-x	LinModHist	Min	-5828093.97	-0.12	-0.94	-4.01	-574356	
_	VCR0/CMAILE(C)	7 CPC-x	LinModHist	Max	10489580.07	0.19	1.58	5.41	110089855	
		8 CPC-x	LinModHist	Min	-10908307.5	-0.16	-1.67	-7.94	-1112429	
		9 Ren-x	LinModHist	Max	6958280.66	0.15	1.32	6.13	69859782.	
		10 Ren-x	LinModHist	Min	-7898853.18	-0.15	-1.4	-6.44	-792938	
		11								
		12								
< _		13								
		14								
记录		15								.成
		16 Bara Rea	ations Program	Control Cha	-+2 /91 /				×	
		ADGK	CIONS CHIUGIAN		0.00			0004		

图 2-11 导出结果

验算地震波是否满足规范要求

对地震荷载作用下的底部剪力结果处理如表 2-1 所示,可以看出 3 条地震波均满足规范要求。

		Y 向		X 向
/	基底剪力 (kN)	时程 反应谱	基底剪力 (kN)	
反应谱法	7100	/	7054	/
EL-centro	6418	90.39%	4880	69.18%
CPC	8804	124.00%	10489	148.70%
Ren	7521	105.93%	6958	98.64%
平均	7581	106.77%	7442	105.51%

表 2-1 验算地震波

2.1.5 隔震支座的选型及布置

隔震支座一般设置在柱底或剪力墙底部。其数量及直径大小通常根据支座的面压确定, 而隔震层承受的水平剪力则决定了隔震支座的水平刚度。

提取基底反力

本案例中对所有柱底均布置隔震支座,提取重力荷载标准值工况下柱底的竖向反力。

在查看结果前需定义代表重力荷载标准值的荷载组合。点击菜单定义>荷载组合>添加新的荷载组合,在弹出的对话框中,输入下图 2-12 所示的内容。

	(自定义生成)	G	
主释		修改/显;	示注释…
苛载组合类型		Linear Add	
项			
转换为自定义荷载组合	为	荷载组合创建非线性工	L况
[入何戰上元纪未组合 荷裁丁·口夕報	荷载工况类型	比例系数	
PD \$AL 元 元 由 称 DEAD ▼	线性静力	1.	
回邦上元石称 DEAD マ DEAD	线性静力 线性静力 线性静力	1. 1. 0.5	沃加

图 2-12 重力代表值组合

記信达

点击菜单**显示>显示表格>分析结果>节点输出>Joint Reactions**,选择输出工况为已定义的荷载组合 G,可得到如下图所示的重力荷载标准值下的柱底反力。

Joint Text	OutputCase	CaseType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m
1	G	Combination	9.711	-3.14	472.636	3.6765	11.5932	0.061
6	G	Combination	0.415	-4.916	729.503	5.6682	0.819	0.0089
11	G	Combination	0.174	-4.928	729.209	5.6881	0.3114	0.0017
16	G	Combination	-0.174	-4.928	729.209	5.6881	-0.3114	-0.0017
21	G	Combination	-0.415	-4.916	729.503	5.6682	-0.819	-0.0089
26	G	Combination	-9.711	-3.14	472.636	3.6765	-11.5932	-0.061
31	G	Combination	16.657	-0.49	687.503	0.5969	19.5702	0.0056
36	G	Combination	0.378	-0.869	1119.046	1.0146	0.8005	-0.0048
41	G	Combination	0.186	-0.874	1118.502	1.0228	0.3301	-0.0013
46	G	Combination	-0.186	-0.874	1118.502	1.0228	-0.3301	0.0013
51	G	Combination	-0.378	-0.869	1119.046	1.0146	-0.8005	0.0048
56	G	Combination	-16.657	-0.49	687.503	0.5969	-19.5702	-0.0056
61	G	Combination	16.657	0.49	687.503	-0.5969	19.5702	-0.0056
66	G	Combination	0.378	0.869	1119.046	-1.0146	0.8005	0.0048
71	G	Combination	0.186	0.874	1118.502	-1.0228	0.3301	0.0013
76	G	Combination	-0.186	0.874	1118.502	-1.0228	-0.3301	-0.0013
81	G	Combination	-0.378	0.869	1119.046	-1.0146	-0.8005	-0.0048
86	G	Combination	-16.657	0.49	687.503	-0.5969	-19.5702	0.0056
91	G	Combination	9.711	3.14	472.636	-3.6765	11.5932	-0.061
96	G	Combination	0.415	4.916	729.503	-5.6682	0.819	-0.0089
101	G	Combination	0.174	4.928	729.209	-5.6881	0.3114	-0.0017
106	G	Combination	-0.174	4.928	729.209	-5.6881	-0.3114	0.0017
111	G	Combination	-0.415	4.916	729.503	-5.6682	-0.819	0.0089
116	G	Combination	-9.711	3.14	472.636	-3.6765	-11.5932	0.061

图 2-13 柱底反力结果

估算隔震支座尺寸

通过 SAP2000 分析得到支座布置位置处的柱底反力 F,由柱底反力计算每个支座的最小 直径。本例中结构属于乙类建筑,竖向压应力σ不应超过 12MPa。

柱底支座面积 A=F/ σ ,再根据公式D = 2 $\sqrt{\frac{A}{\pi}}$ 可算出每个柱底处支座的最小直径。表 2-2 中列出了每个支座最小直径的计算结果。

柱位置	节点标签	柱底反力/kN	基准面压/MPa	最小直径 D/mm
	36	1119.05	12	344.67
	41	1118.50	12	344.58
	46	1118.50	12	344.58
中柱	51	1119.05	12	344.67
	66	1119.05	12	344.67
	71	1118.50	12	344.58
	76	1118.50	12	344.58

表 2-2 柱底支座最小直径

	81	1119.05	12	344.67
	6	729.50	12	278.28
	11	729.21	12	278.23
	16	729.21	12	278.23
<u>}</u> ##	21	729.50	12	278.28
辺住	96	729.50	12	278.28
	101	729.21	12	278.23
	106	729.21	12	278.23
	111	729.50	12	278.28
	1	472.64	12	223.99
在社	26	472.64	12	223.99
用住	91	472.64	12	223.99
	116	472.64	12	223.99

估算隔震层总水平屈服力

本案例中估算支座总水平屈服力为重力荷载标准值下基底竖向反力的 2%。通过点击菜 单**显示>显示表格>分析结果>结构输出>Base Reactions**,输出工况仍选择荷载组合 G,可查 看到基底竖向反力,如下图黄色区域所示。

1	🄇 Base	Reactions											
ſ	文件(F) 视图(V)	格式过滤或选	择(M) 选择	(S) 选项 (O))							
	单位: 女	口注释						Ba	se Reactions				•
	过滤:												
		OutputCase	CaseType Text	GlobalFX KN	GlobalFY	GlobalFZ KN	GlobalMX KN-m	GlobalMY	GlobalMZ KN-m	GlobalX	GlobalY	GlobalZ	XCentroidFX
н.													
	•	G	Combination	1.182E-14	2.041E-14	19425.6	116553.6	-291384	-3.82E-13	0	0	0	0
	•	G	Combination	1.182E-14	2.041E-14	19425.6	116553.6	-291384	-3.82E-13	0	0	0	0

图 2-14 基底竖向反力

所以支座总水平屈服力=19425.6X2%=388.5 KN。结合表 2-2 的计算结果,同时满足水平 屈服承载力要求,初选含铅芯的橡胶隔震支座 LRB400 共 4 个、LRB500 共 8 个、LRB600 共 4 个、普通橡胶隔震支座 LNR400 共 8 个,不同型号的产品规格见表 2-3 和 2-4。

			民职责	等效	如度		
型号	有效直径	橡胶总厚度	困服削 刚度	100%水平 剪切变形	250% 水平 剪切变形	竖向刚度	屈服力
	(mm)	(mm)	kN/m	kN/m	kN/m	kN/mm	kN
LRB400	400	73	8790	1040	820	2200	27.0
LRB500	500	92	10910	1270	1010	2400	40.0
LRB600	600	110	13110	1580	1580	2800	63.0

表 2-3 铅芯隔震支座产品规格

記言达

型号	有效直径	橡胶总厚度	等效刚度	竖向刚度
	(mm)	(mm)	kN/m	kN/mm
LNR300	300	56	490	1000
LNR400	400	73	660	1600
LNR500	500	92	810	2200

表 2-4 橡胶隔震支座产品规格

隔震支座的选型及布置结果

初选隔震支座布置方案如图 2-15 所示。

图 2-15 支座布置图

2.2 水平减震系数确定

对于采用橡胶隔震器的结构,其在不同地震烈度下,橡胶隔震器的性能不同。根据不同 的分析需求,需要分别设置对应于不同地震烈度的模型。本节所涉及的水平减震系数确定是 基于结构在设防地震下的响应计算得出的,故需要先确定设防地震下的隔震模型。基于分析 后的结果进行隔震层验算、确定水平减震系数。

可在原有非隔震模型的基础之上直接建立设防烈度下的隔震模型。本案例采用柱底隔震,隔震层高 1.6m。

图 2-16 隔震模型 1

2.2.1 隔震器的定义和绘制

定义隔震器

通过菜单定义>截面属性>连接/支座属性>添加新属性,弹出如图 2-17 所示的连接单元 定义对话框。

根据厂商提供的产品规格,分别定义模拟铅芯隔震支座 LRB400、LRB500、LRB600、橡 胶隔震支座 LNR400 的连接单元。

对于本节所涉及的设防地震下的分析, 支座参数取表 2-3 和表 2-4 中带底色的数据, 其中水平等效刚度取 100%水平剪切变形对应的值。铅芯隔震支座和橡胶隔震支座的区别在于 是否考虑 U₂、U₃方向的非线性。

			日明公	等效	如度		
型号	有效直径	橡胶总厚度	屈服前 刚度	100%水平 剪切变形	250%水平 剪切变形	竖向刚度	屈服力
	(mm)	(mm)	kN/m	kN/m	kN/m	kN/mm	kN
LRB400	400	73	, 8790	, 1040	, 820	2200	27.0
LRB500	500	92	10910	1270	1010	2400	40.0
LRB600	600	110	13110	1580	1580	2800	63.0

表 2-3 铅芯隔震支座产品规格

	11土安风加吉				×	连接/支座方向属	性		
连接/支座 属性名称 属性注释 总质量和国	≤类型 K 重里	Rubber Iso	lator 🔹		设置	标识 属性名称 方向 类型 非线性 所有分析工识例 有效网度	明的属性	LRB600 U1 Rubber isolator 否 280000	0.
贞里			转运用作员	们生地 1	1	有效阻尼		0.	
里里			转动惯	1性矩 2 1性矩 3	0.	(确定	取消	
线、面、≶ 在线弹簧	S体弹簧比 对此长度5	例 E义的属性		_ /	📜 连接	/支座方向属性	-	-	_
 线、面、3 在线弹簧 对面和实 方向属性 方向 	安体弹簧比 对此长度5 体弹簧中」 固定	例 宦义的属性 北面定义的属 非线性	属性		有	/支座方向属性 识 属性名称 方向 类型 非线性	LRB U2 Rubi	500 Der isolator	
线、面、3 在线弹簧 对面和实 方向属性 方向 □ U1	○体弾簧比 対此长度 体弾簧中」 固定 □	例 這义的属性 北面定义的属 非线性	属性 【修改/显示 ∪		★ 连接 村	/支座方向属性 识 属性名称 方向 类型 非线性 性分析工况使用的	LRB U2 Rubi 是 属性	500 ber Isolator	
线、面、3 在线弹簧 对面和实 方向属性 方向 叉 01 叉 02	会体弾簧比 対此长度5 体弾簧中」 固定 同	例 定义的属性 比面定义的属 非线性 □ ☑	離 属性 修改/显示 U 修改/显示 U	1	★ 连接 村	/支座方向属性 识 属性名称 方向 类型 非线性 性分析工名使用的 有效刚度	LRB U2 Rubi 是 属性	500 per isolator 1580.	
	集体弹簧比 对此长度。 体弹簧中」 固定 □ □ □ □	例 這文的属性 比面定义的属 非线性 又 又	2性 属性 修改/显示 U 修改/显示 U 修改/显示 U	1	¥ 连接 标	//支座方向属性 訳 属性名称 方向 类型 非线性 性分析工具使用的 有效限度 有效限度	LRB U2 Rubi 是 属性	500 ber isolator 1580. 0.	
线、面、3 在线弹簧 对面和实 方向属性 方向 叉 U1 叉 U2 叉 U2 叉 U3 同 R1	(林弹簧) 对此长度。 体弹簧中」 固定 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	例 定义的属性 比面定义的属 非线性	性 属性 修改 虚示 U 修改 虚示 U 修改 虚示 U 修改 虚示 U	1 2 3 1	★ 连握 将 线 期	//支座方向層性 沢 属性名称 方向 失型 非线性 性分析工兒使用的 有効明度 有効明度 切良形位置	LRB U2 Rubl 是 属性	500 ber Isolator 1500. 0.	
线、面、3 在线弹 本 对面和() 方向属性 方向 型 U1 ☑ U1 ☑ U2 ☑ U2 ☑ U3 □ R1 □ R2	(本弹簧比) 对此长度为 体弹簧中」 固定 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	例 E义的属性 北面定义的属 事线性 ⑦ ⑦	性 属性 修改/显示 U 修改/显示 U 修改/显示 U 修改/显示 R 修改/显示 R	1 2 1 2	★ 连接 标 线 页	2支産方向層性 設置性名称 方向 失型 非线性 有効利用 有効用 見 切変所処置 距端距离	「LRB U2 Rubli 是 属性	500 ber Isolator 1580. 0. 0.8	
线、面、3 在线弹和 方向属性 方向 ☑ U1 ☑ U2 ☑ U2 ☑ U3 □ R1 □ R2 □ R3	(体弾簧比)	例 主义的属性 北面定义的属 非线性 ② ⑦	性 属性 修改 星示 U 修改 星示 U 修改 星示 U 修改 星示 U 修改 星示 R 修改 定示 R 修改 定示 R	1 2 1 2 3	★ 连接 村 村 秋 町 単 十	2支座方向層性 設 属性名称 方向 类型 非线性 <u>杜分析工兒使用的</u> 有效預度 有效預度 有效現起 即項形逾高 線性分析工兒使用 即端距高 線性分析工兒使用	LRB U2 Rubi 足 医性	500 per isolator 1580. 0. 0.8 13110.	
线、面、 3 在线弹和 次 方向 属性 了方向 型 U1 型 U2 型 U3 同 R1 同 定 2 同 元 3 同 元 3 同 元 3 同 元 3 同 二 3 同 二 3 目 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日	(本弾簧比)	例 主义的属性 北面定义的属 非线性 ···································	性 属性 修改星示 U 修改星示 U 修改星示 U 修改星示 R 修改星示 R 修改星示 R	1 2 1 2 3	★ 连接 标 纸 型 平	2支座方向層性 決 属性名称 方向 失型 非线性 <u>估分析工兒使用的</u> 有效明定 有效明定 图 端距离 线性分析工兒使用 別度 所述置 即 端距离 以使 分析工兒使用的 有效明定 周 四 原 和 近 和 近 和 近 和 近 和 近 和 近 低 分 所 四 二 秋 二 二 一 二 二 二 二 二 二 二 二 二 二 二 二 二	LRB U2 Rub 是 居性	500 per isolator 1580. 0. 0.8 13110. 63.	

图 2-17 铅芯隔震支座 LRB600

💢 连接/支座属性数据	-			其连接/支座方向属性		×
				标识		
连接/支座类型	Rubber Isolato	r v		属性名称	LRB500	
ER/XEXE				方向	U1 Dubbar legistor	-
属性名称	LRB500		设置默认	类型	75	
属性注释			修改/显示	非动性 所有分析工况使用的属	,H	- 1
总质里和重量				有效刚度	2400000.	1
质量 0.		转动惯性矩 1	0.	有效阻尼	0.	
重量 0.		转动惯性矩 2	0.	【	取消	
		转动惯性矩 3	0.			
	9) #X的属性 (面定义的属性 非线性 V () () () () () () () () () ()	腐性 修改显示 U1 修改显示 U2 修改显示 R1 修改显示 R2 修改显示 R3	1. 1. P-Detta		- LR8500 「U2 Pubber Isolator 是 用約源性 1270. 0.8 0.8 (利約)源性 10910. 40, 0.1 副定 単た為	

图 2-18 铅芯隔震支座 LRB500

连接/支座类型 属性名称	Rubber Is	olator 🔹	属性名称	U1	
属性注释			英型 主线性	否	_
总质里和重量			所有分析工况使用的	属性	
质量	0.	转动惯性矩 1	有效刚度	2200000.	
重量	0.	转动惯性矩 2	有效阻尼	0.	
线、面、实体弹行 在线弹簧对此长 对面和实体弹簧	<mark>附比例</mark> 度定义的属性 中此面定义的	转动惯性矩 3 属性	·····································	定 取消 非 LRB400 U2	
线、面、实体弹簧 在线弹簧对此长 对面和实体弹簧 方向属性	野比例 度定义的属性 中此面定义的J	转动惯性矩 3 属性	··· 麗世和 1. 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	定取消 取消 はRB400 U2 Rubber holator 星	
线、面、实体弹行 在线弹簧对此长 对面和实体弹簧 方向属性 方向 面示	御比例 度定义的属性 中此面定义的则 : 非线性	转动惯性矩 3 属性	·····································	定 取消 求 [JB6400 [42 Rabber holder 漫 T-C44BE0歴44	
线、面、实体弹射 在线弹簧对此长 对面和实体弹簧 方向属性 方向 固定 ☑ U1 □	能比例 度定义的属性 中此面定义的 : 非线性	转动惯性矩 3 属性 		定 取消 求 LRB400 U2 Rubber holder 度 CR使用的器性 変 1940.	
3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	新比例 度定义的属性 中此面定义的 。非线性 。	转动惯性矩 3 属性 修改显示 U1 修改显示 U2	·····································	定 取消 様 「 に 8000 「 202 「 Rubber Notator 展 こ に 条 の時間数 度 1040. 度 1040. の 1040.	
3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	●比例 ● 度定义的属性 中此面定义的 ● 非线性 ● ● ● ● ● ● ●	转动惯性矩 3 属性 修改显示 U1 修改显示 U2 修改显示 U2	··· 置性名 7. 置性名 P-Deta 参 非就性 高: U性化分明 有効阻 可做更新 可做更新	定 取消 取消 様 「LE6400 「ジェ Rubber holder 優 このののので したのののので ののののののののののののののののののののののののののののののの	
 (3、面、实体弾射 在线弹簧对此长 对面和实体弹簧 方向属性 方向属性 ブ 01 ブ 02 ブ 02 ブ 03 R1 	新比例 度定义的属性 中此面定义的 中此面定义的 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	转动惯性矩 3 属性 修改显示 U1 修改显示 U2 修改显示 U3	··· 置性名 7. 置性名 7. 置性名 7. 四 7. 四 7. 四 4. 四	定 取消 取消 様 にRebor toutor 環 に たののの に たのの たののの に たののの たののの に たののの たののの に たののの に たののの に たののの に たののの に たののの に たののの に たののの に たののの たののの に たのの たのの に たのの たののの に たののの たのの たのの たのの たののの たのの たのの たののの たののの たのの たのの たののの たののの たのの たのの たののの たのの たのの たののの たのの たのの たののの たののの たのの たののの たののの たののの たのの たのの たののの たののの たのの たののの たののの たののの たののの たのの たののの たののの たのの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの たののの	
3. 面、实体弹射 在线弹簧对此长 对面和实体弹簧 方向属性 方向 固定 ② U1 ② ② U2 ③ ② U2 ③ ③ R1 ③ ③ R2 ③	新比例 度定义的属性 中此面定义的 : 非线性 · · · · · · · · · · · · · · · · · · ·	转动惯性矩 3 属性 修改显示 U1 修改显示 U2 修改显示 U3 修改显示 C1 修改显示 C2	··· 廣住名 方向 穴型 等达分析 有効用 有効用 有効用 有効用 有効用 有効用 有効用 有効用	定 取消 取消	

图 2-19 铅芯隔震支座 LRB400

表 2-4 橡胶隔震支座产品规格

型号	有效直径	橡胶总厚度	等效刚度	竖向刚度
	(mm)	(mm)	kN/m	kN/mm
LNR300	300	56	490	1000
LNR400	400	73	660	1600
LNR500	500	92	810	2200

图 2-20 橡胶隔震支座 LNR400

記信达

绘制隔震层

步骤一:选择全部的柱底约束点,点击菜单**编辑>带属性复制**,在弹出的对话框中输入 如下图 2-21 所示的参数。

📜 复制	1	×
线性 増里 dx 0. dy 0.	径向	
增重数据 数量 1		
	确定	取消

图 2-21 生成隔震层

步骤二:点击菜单**选择>获取上次选择**,再次选中全部柱底约束点。再点击菜单**指定>** 节点>约束,选择自由节点,点击确定,删除柱底节点约束。

X	节点约束
	节点局部坐标方向约束
	🔲 1 轴平移 📃 绕 1 轴转动
	🔲 2 轴平移 📄 绕 2 轴转动
	🔲 3 轴平移 📄 绕 3 轴转动
	快速指定约束
5	
	确定取消

图 2-22 释放柱底节点约束

步骤三:点击菜单**绘图>绘制两点连接**,在弹出的如图 2-23 的对象属性对话框中,**属性** 项选择定义好的隔震器,按照图 2-14 支座布置图在相应的位置绘制上不同型号的支座,绘制完成后如图 2-24 所示。

对象属性	B
属性	LRB500
XY 平面偏移垂直	0.
绘图控制类型	无 <空格键>

图 2-23 连接单元对象属性

图 2-24 绘制隔震支座

2.2.2 地震工况的定义

在隔震分析中,推荐使用非线性模态叠加法时程分析,并且建议模态分析采用 Ritz 向量法。为了更真实模拟地震作用时结构的受力状况,需要分别定义初始条件和时程工况。其中,初始条件用来模拟地震作用时结构已承受的竖向荷载作用;时程工况用来模拟结构受到的地震作用。

定义初始条件

初始工况所施加的荷载一般采用重力荷载代表值。在 SAP2000 中,为使 FNA 法时程工 况能够接力前续工况的内力和刚度,前续工况的工况类型也应为 FNA 工况,也就是说要使 用 FNA 法来模拟竖向荷载。

步骤一:定义斜坡函数,单击菜单定义>函数>时程,通过如图 2-25 所示的操作进行斜坡函数定义;

Time History 函数定义	↓ 定义时程函数	2# 42 * 7 4 n 27 45 + # #I
函数名称 定义函数	RAMPTH	/这种动动加出被快会望 User
时间 值 0. 0. 0. 0. 20. 1. 60. 1.	 添加 修改 酬% 	* 添加納出数… 修改/显示函数… 删除函数 确定 取消
函数图形		
	0.0,0.0	

图 2-25 RAMPTH 函数

步骤二:点击菜单定义>荷载工况>添加新工况,在弹出的对话框中进行如下图 2-26 所示的设置,完成初始竖向荷载工况定义。

荷载工况数据 -非线性模态时程分析 (FNA)	<u> </u>
荷载工况的名称 注意 HISTQS 设置自定义名 修改/显示…	荷载工兒的类型 Time History ▼ 设计
 初始条件 ● 零初始条件 - 从零应力状态开始 ● 从模态时程工兒的结束状态继续分析 ~ 重要提示:当前工况中包含前提工况中的荷载 	分析类型 末留类型 ● 线性 ● 振型臺加法 ● 非线性 ● 直接积分法 B1程类型 ●
積态荷载工況 用于提取振型的模态工况 MODAL ▼	 頃态 周期
筋加的荷數 荷數类型 荷载名称 函數 比例系数 Load Pattern マ DEAD マ RAMPTH 1.	防量源 Previous (MSSSRC1)
Lead Pattern LIVE RAMPTH 0.5 目 日本語語的荷載總數	
时间步数据 输出时间步的数量 3 输出时间步的大小 20.	常證振型第尼 所有振型常動阻尼 0.99
其他参数 振型如用尼 Constant at 0.99 (修改 事场性参数 Default (修改	<u>現在期間に開業</u> 振型 阻尼 型示… 1 ○ 0 添加 确定 (公次) 取消 時序:

图 2-26 HISTQS 工况

施加地震荷载

修改时程工况为非线性模态时程工况,点击菜单定义>荷载工况>修改/显示荷载工况, 在弹出的对话框中进行如图的修改,将6个地震时程工况逐个修改为FNA法时程工况。

荷载工况				□用户操作:	
荷载工况的名	称 i	荷载工况的类型		添加	新的荷载丁况
Respon-y	▲ 反应谱		•		
CPC-Mid	非线性核	認時程分析 (FNA)		E E	前间乳上沉…
Artifical-Mid Wind-x	── 非线性様	乾時程分析 (FNA)		修改	显示荷载工况…
Wind-y	线性静力			H	11除荷载工况
HISTQS EL-X	非线性植	<u>[恣时桯分析 (FNA)</u> [[态时程分析 (FNA)			
EL-Y	非线性模	読む时程分析 (FNA)		- 显示荷载工》	7 .
CPC-Y	非线性核	認時程分析 (FNA)		显示	示荷载工况树
Ren-X Ren-v	── 非线性様 ▼ 非线性様	镇态时程分析 (FNA) 該态时程分析 (FNA)	-		
	1 231219			确定	取消
荷载工况数据 -非	线性模态时程	分析 (FNA)			
荷载工况的名称		注意		荷载工况的类型	Į.
EL-X	设置	自定义名 修改	以显示	Time History	▼ 设计
初始条件				分析类型	求解类型
					a contraction of the
◎ 琴初始余件	- 从零应力状态	5开始		◎ 线性	 振型叠加法
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	- 从零应力状态	S开始 S继续分析 HIST		○ 线性● 非线性	 振型叠加法 直接积分法
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	- 从零应力状态 工况的结束状系 当前工况。	S开始 S继续分析 HIST 中包含前提工况中的荷载	as ▼ ii	 	 振型叠加法 直接积分法
 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	- 从零应力状态 工况的结束状系 当前工况。	S开始 S维续分析 HIST 中包含前提工况中的荷载	as → 成	 线性 非线性 时程类型 顾态 	 振型叠加法 直接积分法
 ● 零初館余件 ● 从模态时程: 重要提示: - 模态荷载工况 用于提取振型的 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况	5开始 5维续分析 HIST 中包含前提工況中的荷载 MOD	αs ▼ Ř	 3 3 3 4 4 5 5	 ● 振型叠加法 ● 直接积分法
 ● 琴初旗余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 協加的荷载 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况	S开始 S继续分析 HIST 中包含前提工况中的荷载	QS V 成	 线性 非线性 时程类型 瞬态 周期 	 ● 振型叠加法 ● 直接积分法
 ● 契利加余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 施加的荷载 荷载类型 	- 从零应力状态 工况的结束状况 当前工况。 的模态工况 荷载名称	S开始 S維续分析 HIST 中包含前提工況中的荷郵 MOD	QS ▼ 成 AL ▼	 续性 非线性 时程类型 瞬态 周期 	● 振型叠加法 ● 直接积分法
 ● ※初加余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accel 	- 从零应力状态 工况的结束状式 当前工况。 的模态工况 荷载名称 U1	S开始 S继续分析 HIST 中包含前提工况中的荷雪 MOD 	QS ▼ 浅 AL ▼	 线性 事线性 时程类型 開添 周期 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 製利加余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 随加的荷载 荷载类型 Accel Accel 	- 从零应力状态 工况的结束状况 当前工况 ^中 的模态工况 荷载名称 U1	S开始 S进续分析 HIST 中包含前提工况中的商都 MOD EL-200 ▼ 0.01 IEL-200 ▼ 0.01	QS ▼ 成 AL ▼	 结性 • 非线性 时程类型 · 爾病 周期 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 製利加余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accel Accel 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1	S开始 S研始 中包含前提工况中的商事 MOD EL-200 ▼ 0.01 EL-200 ▼ 0.01	QS ▼ 成 AL ▼	 结性 • 非线性 时程类型 · 瞬态 周期 旅加 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 製利加余件 ● 从模态时程: 重要提示: 模态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accel Accel 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1	S开始 S进续分析 HIST 中包含前提工况中的荷载 MOD EL-200 ↓ 0.01 EL-200 ↓ 0.01	QS ▼ 機	 线性 手线性 手线性 手线性 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● ¥初加余件 ● 从模态时程: 重要提示: 種态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accel Accel 	- 从零应力状态 工况的结束状况 当前工况。 竹模态工况 荷载名称 U1 U1	S开始 S連续分析 HIST 中包含前提工况中的荷 MOD ■ EL-200 ■ 0.01 ■ EL-200 ■ 0.01	QS ▼ 残 AL ▼ と例系数	 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 製利加余件 ● 从模态时程: 重要提示: 種态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accei Accei ■ 显示高级的 	- 从零应力状态 工况的结束状况 当前工况。 竹模态工况 荷载名称 U1 U1	S开始 S連续分析 HIST 中包含前提工兄中的荷 MOD ■ EL-200 ● 0.01 ■ EL-200 ● 0.01	QS ▼ 残 AL ▼	 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 報初加余件 ● 从模态时程. 重要提示: 種态荷载工况 用于提取振型的 施加的荷载 荷载类型 Accel ▲ IAccel ■ 显示高级的 时间步数据 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1	S开始 S建築分析 HIST 中包含前提工兄中的荷載 MOD ● EL-200 ● 0.01 ■ EL-200 ● 0.01	QS ▼ 残 AL ▼	 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
 ● 報初加余件 ● 从模态时程. 重要提示: 種态荷载工况 用于提取振型的 施加的荷载 商载类型 Accel Accel 日司步数据 输出时间步 	- 从零应力状态 工况的结束状元 当前工况。 的模态工况 荷载名称 U1 U1	S开始 S建築分析 HIST 中包含前提工兄中的荷雪 MOD ● EL-200 ● 0.01 ■ EL-200 ■ 0.01	QS ★ AL ↓ 比例系数 ↓ ↓ ↓ 2000	 	● 振型叠加法 ● 直接积分法 质量源 Previous (MSSSRC1)
● 琴初頭余件 ● 从模态时程. 重要提示: 構态荷载工况 用于提取振型的 施加的荷载类型 Accel ● Accel ● 时间步数据 输出时间步	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1 01 荷载参数	S开始 S建築分析 HIST 中包含前提工況中的荷雪 MOD ● EL-200 ● 0.01 ■ EL-200 ■ 0.01	QS v 浅 AL v 比例系数 E U 2000 0.02	 	 ● 振型叠加法 ● 直接积分法 局量源 Previous (MSSSRC1)
● 琴初頭余件 ● 从模态时程. 重要提示: 構态荷载工况 用于提取振型的 施加的荷载 Accel ● Accel ● 日间步数据 输出时间步 输出时间步	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1 U1 U1 U1	S开始 S建築分析 HIST 中包含前提工況中的荷雪 MOD	QS v 成 AL v 比例系数 E v 2000 0.02	 	● 振型叠加法 ● 直接积分法
 ● 報初館余件 ● 从模态时程. 重要提示: 種态荷载工况 用于提取振型的 施加的荷载 ● 積式类型 ▲ Accel ● 显示高级的 时间步数据 输出时间步 辅出时间步 其他参数 振型順見 	- 从零应力状态 工况的结束状态 当前工况。 的模态工况 荷载名称 U1 U1 U1 U1	S开始 S建築分析 HIST 中包含前提工况中的荷雪 MOD ・ ・ ・ EL-200 ・ 0.01 「EL-200 001	QS v 成 AL v L例系数 E v 2000 0.02 (約404)	 线性 ● 非线性 ● 非线性 ● 瞬态 ● 周期 ● 添加 ● 修改 ● 剛除	 ● 振型叠加法 ● 直接积分法 局量源 Previous (MSSSRC1) 确定

图 2-27 定义 FNA 时程分析工况

2.2.3 自动风荷载工况

本案例选择基于隔板的自动风荷载。

步骤一:隔板指定

选中楼层所有节点,点击菜单**指定>节点>束缚**,在弹出的对话框中进行如图 2-29 所示 的定义。

图 2-28 选择节点

₩ 指定/定义	《束缚		×
束缚 NULL		选择添 Diapt	加束缚类型 rragm v
🔇 Diaphragm束缚	K		改/显示束缚…
束缚名称	DIAPH1		删除束缚 取消
坐标系	GLOBAL	•	
束缚轴 ◎ X轴 ◎ Y轴 ◎ Z轴	◎ 自动		
 ✓ 指定不同隔板я 处 确定 	D:缚到每个不同的Z 取消	高度	

图 2-29 指定刚性楼板

注意:勾选"指定不同隔板束缚到每个不同的 Z 高度处",该复选框可以分别在不同楼层处生成隔板。步骤二: 定义自动风荷载模式。

点击菜单定义>荷载模式,在弹出的对话框中输入如图 2-30 所示的参数,分别定义 x、y 方向的风荷载。注意:本案例中隔震层在地下,不受风荷载作用,所以需要在**迎风高度**栏, 将程序默认的最小全局 Z=-1.6 修改为 0。

图 2-30 自动风荷载

2.2.4 隔震层验算

完成运行分析后,提取相关结果进行抗风及支座压应力验算,同时对比隔震前后结构的 动力特性及基底剪力。

隔震结构抗风验算

《建筑抗震设计规范》第12.1.3条规定:风荷载标准值产生的总水平力不宜超过结构总 重力的10%。

另外,风荷载下隔震层水平剪力设计值应小于隔震层总屈服力,即 $\gamma_w V_{wk} \leq V_{Rw}$ 。

其中,

γw 一风荷载分项字数,取 1.4;

Vwk一风荷载作用下隔震层水平剪力标准值;

V_{Bw}一隔震层总屈服力;

通过点击菜单**显示>显示表格>分析结果>结构输出>Base Reactions**,查看结构在风荷载 作用下的水平剪力。

💢 Ba	se Reactions										
文件	文件(F) 视图(V) 格式过滤或选择(M) 选择(S) 选项(O)										
单位 过滤	: 如注释 :					Base	Reactions				•
	OutputCase	CaseType Text	GlobalFX KN	GlobalFY KN	GlobalFZ KN	GlobalMX KN-m	GlobalMY KN-m	GlobalMZ KN-m	GlobalX m	GlobalY m	GlobalZ m
•	Wind-x	LinStatic	-135.013	9.818E-11	-2.219E-13	-8.924E-10	-1071.2971	810.0788	0	0	
	Wind-y	LinStatic	2.369E-10	-330.01	5.821E-13	2603.7704	2.15E-09	-4950.1555	0	0	

图 2-31 风荷载计算结果

风荷载方向	风荷载标准值 (kN)	风荷载设计值 (kN)	隔震层屈服力 (kN)					
X 向	135	189	680					
Y 向	330	462	680					

表 2-5 隔震结构抗风验算

表 2-5 统计了 X、Y 方向风荷载标准值、设计值,以及隔震层屈服力。可知,风荷载设 计值小于隔震层屈服力,该隔震结构抗风满足要求。

同时,风荷载标准值小于结构总重力的 10%(由图 2-14 中基底竖向总反力结果,可计 算出结构总重力为 1942.56KN),保证了隔震建筑的舒适性。因此,该结构满足《建筑抗震 设计规范》第 12.1.3 条对结构采用隔震设计的基本要求。

验算隔震器压应力

根据《建筑抗震设计规范》12.2.3 条,在重力荷载代表值下橡胶隔震支座的竖向压应力 不应超过乙类建筑的基准面压限值 12MPa。

通过以下操作获取隔震支座在重力荷载代表值工况下的竖向压力,点击菜单**显示>显示** 表格>分析结果>单元输出>Link Output,点击确定。弹出的对话框如图 2-32 所示,P 对应的 数值即为单元轴力。

英选择	显示表				X
	 (6) 構型定义(0/77) 法释的表) 二 系统数据 二 爾住之义 一 育教儀式定义 二 肖格定义 二 荷教武二兒定义 二 相连数据 	★ 选择输出工况 Select COMB1 COMB2		×	荷载機式(模式定义)
	 □ 中点規定 □ 看線指定 □ 画指指定 □ 送換荷 造成熟想 □ 其他就据 □ 其他就据 ↓ 付給規据 ↓ 付給規 □ 計点編出 図 単元編出 図 単元編出 	CPC-X CPC-Y DEAD EL-X EL-Y G HISTQS LIVE	E	Cancel Clear All	 修改强示违项 设置输出造项 違项 ○ (仍法程約) □ 显示未格式化的
	Bale Output Area Output Area Output Table: Dement Forces - Links Table: Dement Orces - Links Table: Dement John Forces - Lin Table: Dement John Forces - Lin Objects and Elements 统计输出	nks ks			命名集 (保存命名集. (現示命名集 開除命名集(0)
	表格式文件当前表格式文件:程	宇默认			确定 取消

图 2-32 输出隔震支座单元内力

~		1000000000000	0+(IVI) X		(0)			
料位: : 寸波:	如汪祥			Element Force	s - Links			
	Link Text	LinkElem Text	Station Text	OutputCase	CaseType Text	P N	V2 N	V3 N
•	1	1	I-End	G	Combination	-494155.62	-25.32	11.79
	1	1	J-End	G	Combination	-494155.62	-25.32	11.79
	2	2	I-End	G	Combination	-760396.1	-1.47	18.19
	2	2	J-End	G	Combination	-760396.1	-1.47	18.19
	3	3	I-End	G	Combination	-769046.09	0.007135	18.49
	3	3	J-End	G	Combination	-769046.09	0.007135	18.49
	4	4	I-End	G	Combination	-676208.38	-29.67	3.11
	4	4	J-End	G	Combination	-676208.38	-29.67	3.11
	5	5	I-End	G	Combination	-1037353.98	-1.7	4.67
	5	5	J-End	G	Combination	-1037353.98	-1.7	4.67
	6	6	I-End	G	Combination	-1051739.82	0.00843	4.79
	6	6	J-End	G	Combination	-1051739.82	0.00843	4.79
	7	7	I-End	G	Combination	-1051739.82	-0.00843	4.79
	7	7	J-End	G	Combination	-1051739.82	-0.00843	4.79
(•

图 2-33 提取支座轴力

表 2-6 统计了各类型隔震支座在重力荷载代表值下竖向压力最大值和最大面压。可知, 所有支座的面压均小于 12MPa(乙类建筑),满足《建筑抗震设计规范》12.2.3 第 3 条的要求。

阿雪士应刑只	古应纪旦	支座面积	最大竖向压力	最大面压
쪰辰又座空 5	又座痈与	$\times 10^5 \text{ (mm}^2\text{)}$	(kN)	(MPa)
	4	1.256	-676.21	-5.384
	12	1.256	-676.21	-5.384
LRB400	13	1.256	-676.21	-5.384
	23	1.256	-676.21	-5.384
		-5.384		
	2	1.96	-760.396	-3.880
	3	1.96	-769.046	-3.924
	8	1.96	-769.046	-3.924
	10	1.96	-760.396	-3.880
LRB500	15	1.96	-760.396	-3.880
	18	1.96	-769.046	-3.924
	19	1.96	-769.046	-3.924
	22	1.96	-1051.74	-5.366
		-5.366		
	1	2.862	-494.156	-1.724
	11	2.862	-494.156	-1.724
LRB600	14	2.862	-494.156	-1.724
	24	2.862	-494.156	-1.724
		最大值		-1.724
I ND 400	5	1.256	-1037.354	-8.259
LINK400	6	1.256	-1051.74	-8.374

表 2-6 隔震支座最大面压

訊信达

20	1.256	1027.254	8.350
20	1 256	-1051 74	-8 374
17	1.256	-1051.74	-8.374
16	1.256	-1037.354	-8.259
9	1.256	-1037.354	-8.259
7	1.256	-1051.74	-8.374

动力特性对比

表 2-7 为原结构与隔震结构的周期对比。可以看出结构布置了隔震器后,前三阶周期延 长为原结构的 4.5 倍左右。

七刑	扂	哥期/s
抓至	原结构	隔震结构
1	0.412	1.844
2	0.384	1.831
3	0.343	1.554
4	0.124	0.206
5	0.118	0.193
6	0.106	0.168
7	0.065	0.072
8	0.064	0.071
9	0.059	0.07
10	0.059	0.059
11	0.058	0.055
12	0.058	0.053

表 2-7 原结构和隔震结构周期对比

基底剪力对比

通过对比非隔震结构和隔震结构的基底剪力,可以了解在地震作用下隔震支座对结构的 影响。

SAP2000程序可以直接绘制基底剪力时程曲线,点击菜单**显示>显示绘图函数,**在弹出的对话框中进行如图 2-34 所示的定义,绘制出如图 2-35 所示的基底剪力函数。

		百载工况(多步工况)	EL-X
 ✓ 基底抗剪 × 基底抗剪 × 基底抗剪 Z 基底弯矩 × 基底弯矩 × 基底弯矩 Z 	选择绘图函数 这择绘图函数类型 Add Base Functions 自由: 本加绘图函数	 定义绘图函数 竖向方程 添加 ~ ※ 移除 显示 	
Prainess Reput Every 夏氏抗對 Y 一	 総計型 総計算法 総計算法 総計算法 総計算法 総計算法 総計 総計 総計 総計 総計 総計 	近数 TMAE ・	垂直 『 袖叼覆盖层 保存命名集 显示命名集

图 2-34 定义绘图函数

图 2-35 绘制基底剪力时程曲线

提取基底剪力时程曲线数据,可以通过点击菜单**显示>显示表格>分析结果>结构输出**, 在弹出的对话框中进行如图 2-36 所示的操作,提取基底剪力数据。

注意:在输出选项中将"**振型时程结果**"改为"一步一步"。分别提取隔震结构和原结构的基底剪力数据,再利用绘图软件(如 Excle)容易得到隔震和非隔震结构的基底剪力对比图。

說信达

	(输出透现		×	
電(E) □ 模型定义 (0/77 选择的表) ■ □ 系统数据 ■ □ ■ 性定义	振型肌状 源型 to I 所有援型	基底反应位置 m 全局 X 0 m 全局 Y 0 m 全局 Z 0 m	 屈曲振型 振型 to 	荷载模式(模式定义) 选择荷载模式…
□□ 周 □□ 荷 載模式定义 □□□ 其他定义 □□□ 荷 虹 □□□ 「 句 虹 元 文 □□ □ □ □ □ □ □ □ □ □ 二 一 一 二 (奇 載 模 式 定 义 □ □ □ 二 し 一 二 、 (□ 二 、) □ 二 、 (□ 二) 二 、 二 、 、 () □ 二 、 () □ 二 、 () □ 二 、 () □ 二 、 () □) □ 二 () □) □ □ 二 () □ □ () □ □ () □ □ () □ □ () □ □ □ () □ □ () □ □ □ □ □ □ □ □ □ □ □ □ □	振型时程結果 ① 包納图 ④ 一歩一歩 ① 最后歩	 車坊性務力结果 ● 包培団 ○ 一歩一歩 ○ 最后歩 	稳态结果 ④ 包络图 〇 在频率点 In and Out of Phase	4 of 4 Selected 荷载工况(结果) 选择荷载工况
 □□市店指定 □□市指定 □□市指定 □□ 注接指定 	直接时程结果 ④ 包紹四 ○ 一步一步 ○ 最后步	 多歩静力结果 ● 包納問 ○ 一歩一歩 ○ 最后歩 	功率 语密度结果 ④ RMS ③ eqnt(PSO)	6 of 18 Selected 修改显示选项 设置输出选项
 □ 法项首选项数据 □ 其他数据 ☑ 分析结果 (1/29 选择的表) □ 节点输出 □ 节点输出 □ 氧 结构输出 	 今値反応現合 ● 包紹四 ● 相应値 ● 身き結果(如果有) 	Bridge Design Results Centrolling Control All Combos	通 定 取消	 选项 □ 仅选择的 □ 显示未格式化的
				命名集 保存命名集… 显示命名集… 删除命名集(0)…
表格式文件 当前表格式文	7件:程序默认			确定即消

图 2-36 提取基底剪力时程数据

可得到隔震结构与原结构基底剪力时程曲线对比图,如图 2-37 至 2-39 所示,可以直观 看出隔震支座的隔震效果。

图 2-37 EL-CENTRO 波

图 2-39 REN 波

2.2.5 确定水平向减震系数

根据《抗规》12.2.5 条对水平向减震系数取值的规定:对于多层建筑,为按弹性计算所得的隔震与非隔震各层层间剪力的最大比值;对于高层建筑:隔震与非隔震各层倾覆力矩的最大比值与层间剪力的最大比值,取二者的较大值。

注意: 需对 X 方向、Y 方向分别求解, 取最大值。

点击菜单**显示>显示表格>分析结果>结构输出**,在弹出的对话框中,显示层剪力如图 2-41 所示。整理得到的楼层剪力,统计在下表 2-8 和 2-9 中。

注:提取层剪力采用截面切割的方法,具体操作请见本文要点详解 3.1 节内容。

訊信达

选择显示表	
編載(5)	 荷载模式(模式定义) 这種荷载模式 44 Selected 荷载工只结果) 这種荷载工只 6 of 18 Selected 修改理示途顶。 设置输出选顶。 送项 2 尔达择的 显示未格式(化的)
	命名集 【存命名集 日示命名集 一 開除命名集(0) 124 一 日子(本) 日子(日子(本) 日子(日子(本) 日子(日子(日子(日子(日子(日子(日子(日子(
表格式文件 当前表格式文件: 程序默认	(峭定)

图 2-40 输出层剪力

(山) 位:))	如注释	100000000000	5+(m) 25+	() 22-2(0)			Section	Cut Forces - Ar	nalysis			
daga -	SectionCut Text	OutputCase	CaseType Text	StepType Text	F1 KN	F2 KN	F3 KN	M1 KN-m	M2 KN-m	M3 KN-m	GlobalX m	Glob
	1	EL-X	NonModHist	Max	1171.404	0.352	19159.635	5.621	11659.6745	10.7068	15	
	1	EL-X	NonModHist	Min	-1272.809	-0.315	19152.397	-4.3111	-13530.6183	-8.7437	15	
	1	EL-Y	NonModHist	Max	0.44	1203.689	19195.812	12904.2982	67.5389	61.7331	15	
	1	EL-Y	NonModHist	Min	-0.514	-1294.736	19128.57	-11641.0528	-58.1623	-78.8244	15	
	1	CPC-X	NonModHist	Max	2174.276	0.598	19162.962	9.8557	19919.4007	17.6534	15	
	1	CPC-X	NonModHist	Min	-2058.421	-0.646	19150.117	-6.0247	-19340.0222	-14.098	15	
	1	CPC-Y	NonModHist	Max	0.631	2151.274	19199.774	18960.3671	87.5342	128.428	15	
	1	CPC-Y	NonModHist	Min	-0.809	-2059.854	19111.353	-19410.1671	-75.0021	-91.0496	15	
	1	Ren-X	NonModHist	Max	1912.461	1.028	19163.445	11.5654	17851.6615	19.8088	15	
	1	Ren-X	NonModHist	Min	-1845.583	-1.176	19148.11	-10.8448	-18531.4368	-16.4775	15	
	1	Ren-y	NonModHist	Max	1.103	1923.503	19202.577	18781.8472	81.5784	66.4175	15	
	1	Ren-y	NonModHist	Min	-1.164	-1880.933	19088.662	-17486.3658	-63.1358	-72.7775	15	
	2	EL-X	NonModHist	Max	992.194	0.398	14302.088	7.0654	7695.0243	25.9896	15	
	2	EL-X	NonModHist	Min	-1171.968	-0.417	14295.888	-6.0301	-9055.7869	-14.5572	15	
	2	EL-Y	NonModHist	Max	0.547	1000.234	14337.506	8439.7266	61.7385	152.3322	15	
	2	EL-Y	NonModHist	Min	-0.346	-1094.46	14260.786	-7440.9336	-45.2979	-158.6284	15	
	2	CPC-X	NonModHist	Max	1691.822	0.838	14302.998	9.6657	12157.2907	28.3559	15	
	2	CPC-X	NonModHist	Min	-1649.71	-0.868	14295.69	-11.0298	-12687.2383	-30.1775	15	
	2	CPC-Y	NonModHist	Max	0.793	1649.092	14348.709	12381.4268	64.1382	221.442	15	
	2	CPC-Y	NonModHist	Min	-0.93	-1619.713	14246.534	-12263.4984	-79.3413	-228.1685	15	
	2	Ren-X	NonModHist	Мах	1492.856	0.924	14302.742	7.189	11098.9144	24.8727	15	
_	1											

图 2-41 提取层剪力

表 2-8 X 向水平减震系数

X 向			水平向减震系数						
	3	非隔震结构			隔震/非隔震				
	EL	CPC	人工波	EL	CPC	人工波	EL	CPC	人工 波
四层	1951.88	3764.27	2555.02	442.77	584.85	557.34	0.227	0.155	0.218

SAP2000 案例教程:隔震结构分析

三层	3623.48	7051.61	4977.92	886.24	1209.74	1107.12	0.245	0.172	0.222
二层	4958.82	9570.85	6992.07	1171.97	1691.82	1558.67	0.236	0.177	0.223
一层	5844.74	10942.47	7897.14	1272.81	2174.28	1912.46	0.218	0.199	0.242

表 2-9 Y 向水平减震系数

Y 向			水平减震系数						
	非隔震结构				隔震/非隔震				
	EL	EL CPC	人工社	EI	CPC	人工波	EL	CPC	人工
			八工奴	EL					波
四层	2279.32	3164.85	2397.91	388.50	577.61	584.78	0.170	0.183	0.244
三层	4108.86	6225.19	4634.71	783.55	1182.52	1154.88	0.191	0.190	0.249
二层	5321.08	8704.66	6402.00	1094.46	1649.09	1606.76	0.206	0.189	0.251
一层	6488.45	10339.36	7667.53	1294.74	2151.27	1923.50	0.200	0.208	0.251

隔震后水平地震作用计算的水平地震影响系数为:

 $\alpha_{\max 1} = \beta \alpha_{\max} / \psi$

*β*一水平向减震系数,取对于多高层建筑,为按弹性计算所得的隔震与非隔震各层层间 剪力的最大比值;

ψ一调整系数,对一般橡胶支座,取 0.80;支座剪切性能偏差为 S-A 类,取 0.85;隔震装置带有阻尼器时,相应减少 0.05。

表 2-10 给出了结构计算所得的水平向减震系数和水平地震影响系数最大值。

0.245

地震作用不得低于非隔震结构在6度设防时的总水平地震作用。

表 2-10 隔震层以上结构水平地震影响系数最大值 水平向减震系数 水平地震影响系数最大值

	Y	0.251	0.05	02	
由计算结	果可知	,采用基础隔震技术后,	层间剪力有所降低。	上部结构的:	地震影响系数
最大值取 0.05	502,满	足《建筑抗震设计规范》	12.2.5 第3条规定:	隔震层以上。	结构的总水平

0.0490

根据《建筑抗震设计规范》条文说明 12.2.5 中表 7,隔震后该结构水平地震作用所对应的烈度可降低一度按 7 度(0.10g)进行计算。设计采用的楼层地震剪力同时要满足《建筑 抗震设计规范》第 5.2.5 条的最小地震剪力系数的规定。

本案例满足既定的隔震目标,可进行下一步罕遇地震下隔震层校核。

注意:在实际项目中,用户需在此处判断是否满足减震目标,若满足,则进行下一步验算。若不满足,则 需要修改支座布置方案,重新进行计算。

2.3 罕遇地震下隔震层校核

方向

Х

为验算支座相关参数是否满足规范要求,建立罕遇地震下的隔震模型。

說信达

2.3.1 罕遇地震下隔震模型建立

罕遇地震下隔震模型可基于设防地震下的隔震模型进行修改。注意:对于本节所涉及的 罕遇地震作用下的分析,取水平剪切变形 250%时的支座参数。

图 2-42 隔震模型 2

步骤一:修改支座参数。

点击菜单定义>截面属性>连接/支座属性,分别选择 LRB400 和 LRB500(由于本教程采用的 LRB600产品参数中 250%水平剪切变形时等效刚度与 100%水平剪切变形时相同,故不进行修改),点击"显示/修改属性",在弹出的对话框中进行如图 4-43 和 4-44 所示的操作,修改支座名称和线性分析属性中的有效刚度值。

属性名称 属性注释	ĕ类型 K	Rubber Isola	itor	 属性名称 方向 类型 	U1 Rubber Isolator
总质量和重	朢			平均社 所有分析工作体用6) ^{III}
质量		D.	转动惯性矩 1	有效刚度	2200000.
重里		D.	转动惯性矩 2	有效阻尼	0.
			转动惯性矩 3		
				属性名称	LRB400*
方向属性方向	固定	非线性	属性	国性名称 P-D 方向	LRB400* U2 Rubber Isolator
方向属性 方向	固定	非线性	属性 修改显示 01	居性名称 P-D 方向 类型 事続性 総性分析工名	LRB400* U2 Rubber isolator 是
方向属性 方向 ☑ U1 ☑ U2	回定	非线性	属性 修改显示 01 修改显示 U2	居性名称 P-D 英型 李叔性 线性分析工》 有效利度	LRB400* U2 Rubber kolator 是 记使用的魔性 820.
方向属性 方向 ▼ U1 ▼ U2 ▼ U3		非线性 □ ▽ ▽	属性 修改/显示 11 修改/显示 U2 修改/显示 U3	属性名称 P-D 方向 类型 事线性 统性分析IS 有效阴度 有效阴度	LRB400* U2 Rubber isolator 是 200.000 0.000
方向属性 方向 ▼ U1 ▼ U2 ▼ U3 ■ R1		非线性 □ ☑ ☑	属性 修改显示 U1 修改显示 U2 修改显示 U3 修改显示 R1	属性名称 P-D 方向 类型 事线性 线性分析工S 有效用度 有效用度 更切更形位置	LRB400* U2 Rubber isolator 是 20. 0.
方向属性 方向 ▼ U1 ▼ U2 ▼ U3 ■ R1 ■ R2		非线性 □ ☑ □	属性 修改显示 1 修改显示 12 修改显示 13 修改显示 R1 修改显示 R2	属性名称 P-D 方向 类型 事続性 线性分析工S 有効別度 有効現 勇切現形位置 更切現形位置 更切現形位置	LRB400* U2 Rubber isolator 是 2000 82000 0 0
方向属性 方向 マ U1 マ U2 マ U3 同 R1 同 R2 同 R3		非线性 	属性 修改显示 51 修改显示 12 修改显示 R1 修改显示 R1 修改显示 R2 修改显示 R3	属性名称 P-D 方向 类型 事线性 统性分析IS 有効用度 有効用度 更減調題 更減調題 用度	LRB400* U2 Rubber isolator 是 200.000 0.000 1000

图 2-43 LRB400*属性定义

<u> </u>	Rubber Iso	lator 👻	属性名称	LRB500*	
BHER	L DDC000		方向	U1	
唐性名称	LRB500*		类型	Rubber Is	olator
馬性汪粹			非线性	否	
总质里和重量			所有分析工况使用	的属性	
质量	0.	转动惯性矩 1	▲ 有効印度		2400000.
重里	0.	转动惯性矩 2	有效阻尼		0.
		转动惯性矩 3			
4.P	Mir Li z And	/		确定	取消
线、面、头体理	黄��挒				
1.1.0-27.000.1.11.1					
在线弹簧对此步	(度定义的属性	/		i ale da 199 i d	
在线弹簧对此H 对面和实体弹簧	《度定义的属性 §中此面定义的属	it /	1. 注接/支持	药向属性	
在线弹簧对此书 对面和实体弹簧 方向属性	E度定义的属性 使中此面定义的属	it .	1. P-De	防向属性	
在线弹簧对此书 对面和实体弹簧 方向属性 方向 固知	度定义的属性 野中此面定义的属 至 非线性	融属性	1. P-De 原性	5方向属性 名称 ロ	RB500*
在线弹簧对此节 对面和实体弹簧 方向属性 方向 固定 叉 U1	《度定义的属性 發中此面定义的属 定 非线性	弹性 属性 修改显示 U1	1. P-De 原性 方向	5方向属性 名称 [1]	RB500* 2 ubber Isolator
在线弹簧对此节 对面和实体弹簧 方向属性 方向 固定 又 U1	○ 度定义的属性	2性 属性 修改是示 U1 修改原示 U2	1. P-De 原性 方向 満型 事地	5方向属性 名称 U R R 性 是	RB500* 2 ubber Isolator
在线弹簧对此节 对面和实体弹簧 方向属性 方向 固定 叉 U1 叉 U2 叉 U2	度定义的属性 時中此面定义的属 日本 3	四性 属性 修改還示 U1 修改還示 U2	1. P-De 集性 方向 本規 梁性分	5方向属性 名称 「U 」 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	RB500° 2 ubber Isolator
在线弹簧对此 ⁴ 对面和实体弹簧 方向属性 方向 固切 マ U1 マ U2 マ U3 マ U3 マ U3 マ U3 マ U3 ロ	 度定义的属性 算中此面定义的属 算中此面定义的属 算中此面定义的属 算いている 第3 第43 第44 第44<td>間 属性 修改星示 U1 修改星示 U2 修改 星示 U3</td><td>1. 英雄振文語 中心 中心 中心 年級 東 年級 東 秋 東 秋 中心 東 秋 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 市 秋 市 秋 市 秋 市 和 秋 市 和</td><td>5方向事性 名称 [U [0] [0] [0] [0] [0] [0] [0] [0]</td><td>RB500* 2 Lubber isolator 2 1010.</td>	間 属性 修改星示 U1 修改星示 U2 修改 星示 U3	1. 英雄振文語 中心 中心 中心 年級 東 年級 東 秋 東 秋 中心 東 秋 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 中 秋 市 秋 市 秋 市 秋 市 和 秋 市 和	5方向事性 名称 [U [0] [0] [0] [0] [0] [0] [0] [0]	RB500* 2 Lubber isolator 2 1010.
在規準簧列出り 対面和实体準備 方向属性 方向 固定 ▼ U1 ▼ U2 ▼ U2 ▼ U3 ■ R1	6度定义的属性 時中此面定义的属 定 非线性]]	理 属性 修改星赤 U1 修改星示 U2 修改星示 U3 修改显示 U3 修改显示 R1	1. 送 连接/支援 P-De 标记 属性 方向 支型 半线 统性分 病効	55向電性 名称 U の 取 検 が 工 2,使用の電性 別度 関度	RB500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
在线弹簧对此代 对面和实体弹簧 方向属性 ブロ 図 マ U1 図 U2 R1 R1 R2 R2 R1	 度定义的属性 新中此面定义的属 第 1 1	理 属性 修改星末 U1 修改星末 U2 修改星末 U3 修改星末 R1 修改型示 R1 修改型示 R2	1. <td>応向運性 名称 「U 」 「R 性 尾 所工只使用的属性 開度 肥心 思</td> <td>R8500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	応向運性 名称 「U 」 「R 性 尾 所工只使用的属性 開度 肥心 思	R8500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
在线弹簧对此代 对面和实体弹簧 方向 属性 万向 图频 ② U1	 度定义的属性 新中此面定义的属 第 1 1	理 属性 修改星末 U1 修改星末 U2 修改星末 U3 修改星末 R1 修改星示 R2 修改星示 R3	1. <td>応向運性 名称 「U 」 「和 「 「 「 「 「 「 」 「 和 」 「 「 「 」 「 」 「</td> <td>R8500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	応向運性 名称 「U 」 「和 「 「 「 「 「 「 」 「 和 」 「 「 「 」 「 」 「	R8500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
在統導簧对此代 対面和实体導簧 方向属性 一方向 固切 マ U1 マ U2 マ U3 R1 R2 R3 固定全	 度定义的属性 (中止面定义的属 (中止面定义的属 (中止面定义的属 (中止面定) (中止面定	理 属性 修改星末 U1 修改星末 U2 修改星末 U3 修改星末 R3 修改星示 R3	1. 送 连接/支援 P-De 标识 属性 方向 类型 支型 本統 系統 與切與 異端 可切與 異端 要求	応向運性 名称 『 』 原 低 所工兒供用の属性 昭 記 記 始 置 開 見 見 記 の 属 見 の 属 見 の の 同 同 の の の 同 の の の の の の の の の の の	R8500* 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
在线弹簧对此书 对面和实体弹簧 方向属性 了的 团灯 マ U1 マ U2 R1 R2 間定全	 度定义的属性 (中止面定义的属 (中止面定义的属 (中止面定义的属 (中止面定) (中止面定	理 属性 修改 虚示 U1 修改 虚示 U2 修改 虚示 R1 修改 虚示 R2 修改 虚示 R3	1. 连接/女婿 P-De 标识 工作 有效 受出 承担 外間 東銀 段性分 勇功 夏切夏 夏明 中球性 甲螺栓	5方向漏性 5方向漏性 44年 [1] 10 10 10 10 10 10 10 10 10 10	R8500* 2 ubber isolstor 4 1010. 0. 0.8 10910. 40

图 2-44 LRB500*属性定义

其 连接/支座属性	x
属性 LNR400 LRB400* LRB500* LRB600*	点击: 添加新属性(A) Add Copy of Property 修改/显示 属性(M) 刪除属性(D)
	确 定 取消

图 2-45 修改后支座列表

步骤二:调整地震工况

罕遇地震加速度时程最大值为400cm/s²,而设防地震下加速度时程最大值为200cm/s², 所以直接修改**比例系数**为0.02,如图2-46所示,按此方法修改其他的地震工况。

10.5%上70%以第一号F821土保心3431年7月17日(FINA)	Ex n here a v
荷载工况的名称	荷载工况的类型
EL-X 设置自定义名 修改/显示	Time History • 设计
初始条件	分析类型 求解类型
◎ 零初始条件 - 从零应力状态开始	◎ 振型叠加法
◎ 从模态时程工况的结束状态继续分析 HISTQS ▼	 事线性 直接积分法
重要提示: 当前工况中包含前提工况中的荷载	时程类型
	 ● 瞬态
模态荷载工况	() 周期
用于提取振型的模态工况 MODAL ▼	
施加的荷载	质量源
荷载类型 荷载名称 函数 比例系数	Previous (MSSSRC1)
Accel 🗸 U1 👻 EL-200 👻 0.02	
Accel U1 EL-200 0.02	添加
E	修改
	冊修余
🔲 显示高级的荷载参数	
叶词连数据	
▶31932/ \$230 ★会山田→2回15 65#5 (2000)	
制工时间步时数里 2000	
输出时间步的大小 0.02	
其他参数	
振型阻尼 Constant at 0.05 修记	改显示 通定
非线性参数 Default 修改	
1	

图 2-46 调整地震波为罕遇地震

2.3.2 隔震层水平最大位移校核

本案例中罕遇地震下,隔震支座最大水平位移值取三条地震波时程工况的包络值。规范 规定该值不应超过有效直径的 0.55 倍和橡胶层总厚度 3 倍二者的较小值。 可分别定义 X 和 Y 方向的地震工况包络荷载组合,如下图 2-47 所示,提取三条地震波时程工况的水平位移包络值。

注释	(目定义生成)	COMB1 修改/显示	注释	荷载组合名称 注释	(自定义生成)	COMB2 修改/显示	注释
荷载组合类型		Envelope		荷载组合类型		Envelope	•
5项 转换为自定义荷载	組合	荷载组合创建非线性工	Я.	选项 转换为自定义荷部	戦組合 为	荷载组合创建非线性工法	2
E义荷载工况结果组合一 荷载工况名称	荷载工况类型	比例系数		定义荷载工况结果组合 荷载工况名称	荷载工况类型	比例系数	
Ren-x	▼ 非线性模态时程分析	1.		Ren-y	▼ 非线性模态时程分析	1.	
Ren-x EL-x CPC-x	非线性模态时程分析 非线性模态时程分析 非线性模态时程分析	(FNA) 1. (FNA) 1. (FNA) 1.	添加	Ren-y EL-y CPC-y	非线性模态时程分析 非线性模态时程分析 非线性模态时程分析	(FNA) 1. (FNA) 1. (FNA) 1.	添加
			1994/				nnir

图 2-47 定义荷载组合

完成运行分析之后,点击菜单**显示>显示表格>分析结果>单元输出>Link Output**,提取 三条地震波时程工况的包络值,作为隔震层水平最大位移的代表值,如下图 2-48 所示。

立。	如注释				Element Defor	mations - Links			
	Link Text	LinkElem Text	OutputCase	CaseType Text	StepType Text	U1 mm	U2 mm	U3 mm	R1 Radians
	1	1	COMB1	Combination	Max	-0.02669	210.229332	0.003871	0.000188
	1	1	COMB1	Combination	Min	-0.348771	-202.276902	-0.041753	-0.000179
	2	2	COMB1	Combination	Мах	-0.32702	210.820873	-0.01784	0.000142
	2	2	COMB1	Combination	Min	-0.349775	-202.890959	-0.062462	-0.000136
	3	3	COMB1	Combination	Max	-0.343684	210.846106	-0.030632	0.000143
	3	3	COMB1	Combination	Min	-0.344925	-202.951021	-0.055795	-0.000138
	4	4	COMB1	Combination	Max	-0.139452	212.972743	0.014922	0.000157
	4	4	COMB1	Combination	Min	-0.49551	-204.905488	-0.029571	-0.00015
	5	5	COMB1	Combination	Max	-0.656169	213.419124	-0.000786	0.000127
	5	5	COMB1	Combination	Min	-0.678849	-205.372289	-0.044818	-0.000121
	6	6	COMB1	Combination	Max	-0.682256	213.425401	-0.014251	0.000127
	6	6	COMB1	Combination	Min	-0.683234	-205.45363	-0.039052	-0.000122
	7	7	COMB1	Combination	Max	-0.681073	213.401663	-0.015592	0.000126
		1							

Z1∓(F) 视图(V)	格式过渡或这	±}≄(M) 达注	(S) 选坝(O)				
₩C: 女 地想:	心主経				Element Deformat	ions - Links			
	Link Text	LinkElem Text	OutputCase	CaseType Text	StepType Text	U1 mm	U2 mm	U3 mm	R1 Radians
		1	COMB2	Combination	Max	0.066284	0.077186	201.353771	7.4E-0
	1	1	COMB2	Combination	Min	-0.444956	0.014505	-209.341827	-7.2E-
	2	2	COMB2	Combination	Max	-0.071562	0.057315	203.096951	6.5E-0
	2	2	COMB2	Combination	Min	-0.616868	-0.00889	-211.169129	-6.5E-0
	3	3	COMB2	Combination	Max	-0.079887	0.033263	203.313079	1.1E-0
	3	3	COMB2	Combination	Min	-0.619915	-0.020245	-211.394045	-9.103E-0
	4	4	COMB2	Combination	Max	-0.30769	0.085577	201.927045	5.4E-0
	4	4	COMB2	Combination	Min	-0.321021	0.045372	-209.910736	-5.2E-
	5	5	COMB2	Combination	Max	-0.661728	0.066397	203.589027	5E-0
	5	5	COMB2	Combination	Min	-0.674596	0.027655	-211.644278	-4.9E-0
	6	6	COMB2	Combination	Max	-0.677208	0.02737	203.799818	1E-0
	6	6	COMB2	Combination	Min	-0.688977	-0.010423	-211.863304	-8.078E-
	7	7	COMB2	Combination	Max	-0.677454	0.002566	203.799222	6.973E-0
	7	7	COMB2	Combination	Min	-0.688587	-0.034159	-211.863103	-7.526E-
	8	8	COMB2	Combination	Max	-0.079939	0.020655	203.312882	7.89E-0
	8	8	COMB2	Combination	Min	-0.620357	-0.035282	-211.393517	-8.783E-0
	9	9	COMB2	Combination	Max	-0.662777	-0.035327	203.586317	4.8E-0
	9	9	COMB2	Combination	Min	-0.673686	-0.071346	-211.643668	-4.9E-0
	10	10	COMB2	Combination	Max	-0.071616	0.004301	203.095537	6.4E-0
	10	10	COMBS	Combination	Min	0.617888	0.056316	211 167414	E AE (

图 2-48 提取支座位移

表 2-11 列出了隔震支座的最大水平位移值,可以看出隔震支座最大水平位移均小于其 允许极限位移值(min(0.55D, 3Tr)),满足规范要求。

支座型号	支座编号	X 向最大	Y 向最大	极限位移
	4	212.97	-209.91	
	12	212.84	-209.91	210
LKB400	13	212.84	-209.89	219
	23	212.97	-209.89	
	2	210.82	-211.17	
	3	210.85	-211.39	
	8	210.83	-211.39	
1 0 0 500	10	210.77	-211.17	275
LKB300	15	210.77	-211.08	215
	18	210.83	-211.31	
	19	210.85	-211.31	
	22	210.82	-211.08	
	1	210.23	-209.34	
I RP600	11	210.14	-209.34	330
LBR000	14	210.14	-209.29	550
	24	210.23	-209.30	
	5	213.42	-211.64	
	6	213.43	-211.86	
	7	213.40	-211.86	
I ND 400	9	213.32	-211.64	210
LINK400	16	213.32	-211.59	219
	17	213.41	-211.81	
	20	213.43	-211.81	
	21	213.43	-211.59	

表 2-11 隔震支座最大水平位移(mm)

2.3.3 隔震支座拉应力校核

根据《抗规》12.2.4 条,关于橡胶隔震支座最大拉应力限值的规定;在罕遇地震作用下,隔震支座不宜出现拉应力;当少数隔震支座出现拉应力时,其拉应力不应大于 1MPa。

规范中对拉应力校核采用的荷载组合并无明确规定,各厂家采用的荷载组合也有所差异。 本案例中取**D** + 0.5**L** + E_h - 0.5 E_v 的荷载组合结果作为计算极小面压的压力值。

其中,

D一恒荷载,包含结构自重;

L一活荷载;

*E*_h一水平地震,本例中取三条地震时程工况包络值;

 E_v 一竖向地震,取 0.2 重力荷载代表值(D + 0.5L)。

通过菜单**显示>显示表格>分析结果>单元输出>Link Output**,提取水平地震作用下隔震支 座轴力包络值。如图 2-49 所示的连接单元内力表中,程序输出了内力的最大和最小值,其 中轴力为正值代表支座受拉,轴力为负值代表支座受压。

¥ Elen 文件(I	nent Forces - l F) 视图(V)	.inks 格式过滤或选	择(M) ;	选择(S) 选项	i(O)					
单位: : 过滤:	单位: 如注释 Element Forces - Links ▼ 过滤:									
	Link Text	LinkElem Text	Station Text	OutputCase	CaseType Text	StepType Text	P KN	V2 KN	V3 KN	T ^ KN-mm
•	1	1	I-End	COMB1	Combination	Max	-74.731	332.311	0.127	E
	1	1	J-End	COMB1	Combination	Max	-74.731	332.311	0.127	
	1	1	I-End	COMB1	Combination	Min	-976.558	-321.885	-0.291	
	1	1	J-End	COMB1	Combination	Min	-976.558	-321.885	-0.291	
	2	2	I-End	COMB1	Combination	Max	-784.847	266.006	0.068	
	2	2	J-End	COMB1	Combination	Мах	-784.847	266.006	0.068	
	2	2	I-End	COMB1	Combination	Min	-839.459	-257.354	-0.459	
	2	2	J-End	COMB1	Combination	Min	-839.459	-257.354	-0.459	
	3	3	I-End	COMB1	Combination	Max	-824.843	266.033	0.019	
	3	3	J-End	COMB1	Combination	Max	-824.843	266.033	0.019	
	3	3	I-End	COMB1	Combination	Min	-827.82	-257.42	-0.468	
	3	3	J-End	COMB1	Combination	Min	-827.82	-257.42	-0.468	
	4	4	I-End	COMB1	Combination	Max	-306.795	211.503	0.086	
	4	4	J-End	COMB1	Combination	Max	-306.795	211.503	0.086	
•		1					• •	i		Þ
记录:	<< <	1 >) >> / 9	6				添加表格] [7	戚

单位:∮ 述滤:	心注释					Element Forc	es - Links				
_	Link Text	LinkElem Text	Station Text	OutputCase	CaseType Text	StepType Text	P KN	V2 KN	V3 KN	T KN-m	
	1	1	I-End	COMB2	Combination	Max	185.594	0.576	320.675	0	Γ
	1	1	J-End	COMB2	Combination	Max	185.594	0.576	320.675	0	Γ
	1	1	I-End	COMB2	Combination	Min	-1245.878	-0.18	-331.147	0	Г
	1	1	J-End	COMB2	Combination	Min	-1245.878	-0.18	-331.147	0	Г
	2	2	I-End	COMB2	Combination	Max	-171.748	0.257	257.579	0	Г
	2	2	J-End	COMB2	Combination	Max	-171.748	0.257	257.579	0	Г
	2	2	I-End	COMB2	Combination	Min	-1480.484	-0.17	-266.386	0	t
	2	2	J-End	COMB2	Combination	Min	-1480.484	-0.17	-266.386	0	Г
	3	3	I-End	COMB2	Combination	Max	-191.728	0.172	257.815	0	Γ
	3	3	J-End	COMB2	Combination	Max	-191.728	0.172	257.815	0	t
	3	3	I-End	COMB2	Combination	Min	-1487.795	-0.197	-266.631	0	t
	3	3	J-End	COMB2	Combination	Min	-1487.795	-0.197	-266.631	0	T
	4	4	I-End	COMB2	Combination	Max	-676.918	0.56	201.794	0	T
	4	4	J-End	COMB2	Combination	Max	-676.918	0.56	201.794	0	Γ
	4	4	I-End	COMB2	Combination	Min	-706.246	-0.022	-208.812	0	Γ
	4	4	J-End	COMB2	Combination	Min	-706.246	-0.022	-208.812	0	Γ
	5	5	I-End	COMB2	Combination	Max	-1058.766	0.044	134.369	0	Γ
	5	5	J-End	COMB2	Combination	Max	-1058.766	0.044	134.369	0	Γ
	5	5	I-End	COMB2	Combination	Min	-1079.354	0.018	-139.685	0	T

图 2-49 连接单元内力(X和Y向)

由于本案例中水平地震时程工况已考虑了重力荷载代表值的初始条件,故水平地震的结果输出代表 $D + 0.5L + E_h$ 的结果。

将图 2-49 中轴力最大值(即表中 Max 对应值)与 0.5 竖向地震作用下支座轴力进行组合,可得到D + 0.5L + E_h – 0.5 E_v 组合下支座轴力,进而得到支座极小面压值如下表 2-12 所示。

十成刑日	支座	极小面压(MPa)				
文座型亏	编号	X 向	Y 向			
	4	-1.876	-4.823			
	12	-1.784	-4.855			
LKB400	13	-1.783	-4.855			
	23	-1.882	-4.848			
	2	-3.590	-0.462			
	3	-3.789	-0.558			
	8	-3.761	-0.559			
100500	10	-3.618	-0.463			
LKB200	15	-3.620	-0.331			
	18	-3.805	-0.435			
	19	-3.803	-0.437			
	22	-3.616	-0.336			
	1	-0.078	0.843			
	11	-0.026	0.847			
LKB600	14	-0.024	0.931			
	24	-0.075	0.927			
	5	-7.503	-7.574			
	6	-7.820	-7.756			
	7	-7.805	-7.759			
L ND 400	9	-7.519	-7.587			
LINK400	16	-7.521	-7.587			
	17	-7.826	-7.754			
	20	-7.826	-7.754			
	21	-7.515	-7.584			

表 2-12 隔震支座极小面压

由表 2-12 可知,隔震支座罕遇地震作用下支座承受的拉应力均小于 1MPa,满足规范要求。

2.3.4 隔震支座压应力校核

一般可取支座极大面压限值为 2 倍基准面压(当支座在 2 倍基准面压下各项性能指标、 变形能力及稳定性能够满足设计要求时)。本例中支座基准面压为 12MPa,取极大面压限 值为 24MPa。

本案例中取D + 0.5L + E_h + 0.5 E_v 的荷载组合结果,作为计算极大面压的压力值。

将图 2-49 轴力最小值(即表中 Min 对应值)与 0.5 竖向地震作用下支座轴力进行组合,可得到D + 0.5L + E_h + 0.5 E_v 组合下支座轴力,进而得到支座极大面压值如下表 2-13 所示。

	表 2-13 隔震支座极大面压								
支座型号	支座	极大面压(MPa)							

	编号	X 向	Y 向
	4	-9.246	-5.623
1 00 400	12	-9.145	-5.602
LKD400	13	-9.144	-5.601
	23	-9.237	-5.608
	2	-4.697	-7.553
	3	-4.643	-7.591
	8	-4.673	-7.596
1.00500	10	-4.693	-7.566
LKB300	15	-4.697	-7.433
	18	-4.654	-7.471
	19	-4.653	-7.470
	22	-4.692	-7.430
	1	-3.642	-4.409
	11	-3.593	-4.411
LKB000	14	-3.590	-4.327
	24	-3.640	-4.325
	5	-9.504	-8.594
	6	-9.575	-8.777
	7	-9.594	-8.772
I ND 400	9	-9.505	-8.582
LINK400	16	-9.508	-8.576
	17	-9.583	-8.774
	20	-9.581	-8.774
	21	-9.502	-8.576

由表 2-12 可知所有隔震支座的最大压应力均小于 24MPa,满足承载力要求。

3 要点详解

3.1 层剪力

由于 SAP2000 中没有层的概念,不能在分析结果中直接提取各楼层的层剪力,可借助 截面切割来统计输出相应结果。

3.1.1 截面切割

截面切割是程序自带的一种内力统计的方式,一般用于统计和输出节点对单元的合力。 在 SAP2000 中有两种方法定义截面切割:方法一,定义截面切割组法;方法二,直接绘制 法。本文采用定义截面切割组法统计楼层力。

注:反应谱工况下,不可直接将各构件的剪力值直接进行代数相加当做楼层剪力值。截面切割更多内容可访问筑信达知识库:<u>http://www.cisec.cn/Support/knowledgeBase/KnowledgeBaseMain.aspx</u>

步骤一: 定义组

利用三维视图,将模型视图调整到下图 3-1 所示,方便进行选择。

記信达	
	3-D View
送量3D规图 視图方向角 270 平面 0 标高 0 水園 3-d xy 文型 磺定 取消	

图 3-1 按层选择柱和节点

分别将每一层柱子及柱底节点定义为一组,方便后续截面切割定义。如上图所示,选择 一层柱及柱底,通过菜单**指定>指定到组>添加新组**,在弹出的对话框中输入组名称,点击**确** 定,完成一层柱分组定义。按同样的方法完成其它楼层柱的分组定义。

	₩ 指定/定义组名称		🧮 指定/定义组名称	×
 ★ 但主义 組合称 Source: User-defined 組代用 ② 送择 ② 截面(功能定义 ② 斜框架设计组 ③ 詳細+10+4组 	yiceng 静力非线性结构阶段 ご 新決拒线性结构阶段 ご 新染反应输出 自动物概保解明力法力输出 自动物概保解明力法力输出	信击: 透加新组 修改是示组 修改多个组 确定	成组 erceng sanceng siceng yiceng	点击: 添加新组 修改,显示组 修改多个组 剛除组
☑ 撥设计组 ☑ 冷雪设计组	✓ 质量和重量输出 全都这中服清 显示颜色 配済	BA	选项 ◎ 添加到组 ◎ 替换组 ◎ 删除对话框组	确定

图 3-2 定义组

步骤二: 定义截面切割

点击菜单定义>截面切割>添加新截面切割,对每层分别定义的截面切割。

			截面切割		
			截面切割	点击:	
載面切割数描					
麻(類(E)					
1		坐标系	单位	修改/显示截面切	割
截面切割名	1	GLOBAL	+ KN, m, C	-	
截面切割的定义通信				删除截面切害	IJ
分组 (四) 功能形式的标案					
分组	yiceng -			确定	
截面切割結果类型					_
④ 分析 (F1, F2, F3, M1, M2,	, M3)			取消	
⑦ 设计 (P, V2, V3, T, M2, M3)	3)				
在该处报告的结果					
 更以 一 用户定义 					-
×坐標					
Y 坐标 2 坐标					
都面切割時常相方向-分析 後23時角	0.				
绕丫轴转角	0.		确定		
缆×轴路角	0.		BR:H		
🖂 高級紬	高級				
💢 截面切割	J				
一截而切	実		~占击:		
Extend (7.5			A. 44		
1			法而	おあれまし	
1			添加	截面切割…	
1 2 2			添加	截面切割	
1 2 3			添加	截面切割	
1 2 3 4			添加 修改/5	截面切割 示截面切割	
1 2 3 4			添加 修改/ 运		
1 2 3 4			添加 修改/星	截面切割 示截面切割 余截面切割	
1 2 3 4			添加 修改/痘 冊脚	截面切割 示截面切割 徐截面切割	
1 2 3 4			添加 修改/运 冊脚	截面切割 示截面切割 余截面切割	
1 2 3 4			添加 修改/匠 冊Ø	截面切割 示截面切割 余截面切割	
1 2 3 4			添加 修改恆 冊開	截面切割 示截面切割 徐截面切割	
1 2 3 4			添加 修改/归	截面切割 示截面切割 涂截面切割 确定	
1 2 3 4			添加 修改/归 一	截面切割 3示截面切割 3<	
1 2 3 4			添加 修改/雪 一	截面切割 示截面切割 < 	
1 2 3 4			添加	截面切割 示截面切割 余截面切割 确定 取消	
1 2 3 4			添加	截面切割 示截面切割 < <td></td>	
1 2 3 4			添加 修改/归 一 一 修改/归 一 <	截面切割 示截面切割 < 	

图 3-3 定义截面切割

步骤三:提取层剪力

通过菜单**显示>显示表格>分析结果>结构输出>Other Output Items>Table:Section Cut** Forces Analysis,选择截面切割结果如图 3-4 所示。选中后点击"确定",显示数据表如图 3-5 所示,在默认情况下,表中 F1 和 F2 值代表对应工况下的 X 方向和 Y 方向的楼层剪力。

記言达

图 3-4 提取截面切割力

位: 滤:	如注释					Secti	on Cut Forces -	Analysis			
	SectionCut Text	OutputCase	CaseType Text	StepType Text	F1 KN	F2 KN	F3 KN	M1 KN-mm	M2 KN-mm	M3 KN-mm	GlobalX mm
	1	EL-x	NonModHist	Max	2425.673	3.987	19116.943	49488.08	22126489.23	79070.6	15
	1	EL-x	NonModHist	Min	-2686.957	-7.619	19115.275	13152.4	-26672623.5	-81328.61	15
	1	EL-y	NonModHist	Max	7.158	2438.802	19117.372	24718996.92	48214.7	226924.54	15
	1	EL-y	NonModHist	Min	-5.258	-2600.334	19115.362	-22964209.6	-38198.06	-312442.37	15
	1	CPC-x	NonModHist	Max	5007.93	9.815	19117.567	72463.87	45558898.6	156594.59	1
	1	CPC-x	NonModHist	Min	-4921.805	-12.901	19114.633	-9519.44	-44253665	-200092.79	1
	1	CPC-y	NonModHist	Max	9.507	4991.346	19117.302	43557345.4	65055.39	416881.89	1
	1	CPC-y	NonModHist	Min	-8.934	-4854.574	19115.007	-45205255	-53915.16	-326262.08	1
	1	Ren-x	NonModHist	Max	3061.872	4.091	19117.022	47005.53	28841536.8	54416.29	1
	1	Ren-x	NonModHist	Min	-3437.764	-6.638	19115.149	13497.86	-31155632.1	-84582.84	1
	1	Ren-y	NonModHist	Max	4.705	3050.977	19116.984	31957569	35064.26	162501.1	15
	1	Ren-y	NonModHist	Min	-2.974	-3456.967	19115.253	-28067291.7	-26636.78	-181270.13	15
	2	EL-x	NonModHist	Max	1884.982	2.485	14336.345	33481	13774587.85	41756.66	15
	2	EL-x	NonModHist	Min	-2280.976	-1.428	14326.519	-25613	-17004011.1	-23170.55	1
_	2	FLV	NonModHiet	Mav	3 475	1050 488	1/222 222	15784485 38	48766 43	140150 66	4

图 3-5 层剪力

3.1.2 层剪力

基于前述的结果提取,可整理得到对应工况下的层剪力,以 EL-x 工况为例。

表 3-1: 层剪力统计(kN)

工况	楼层	层剪力
	4	442.77
EL	3	886.24
EL-X	2	1171.97
	1	1272.81

3.2 橡胶隔震器定义

在 SAP2000 中,使用 Rubber Isolator 连接单元模拟橡胶隔震器,连接单元中的各参数来 模拟橡胶隔震器的属性。

连接 / 支座	类型	Rubber Isol	lator 👻	
属性名称		LNR400		设置默认名
属性注释				修改/显示
总质量和重	里			
质量		0.	转动惯性矩 1	0.
重重		0.	转动惯性矩2	0.
浅、面、实 在线弹簧; 对面和实((体弹簧) 对此长度; 本弹簧中)	2例 定义的属性 此面定义的属	转动惯性矩 3	0. 1. 1.
线、面、实 在线弹簧) 对面和实(方向属性	《体弹簧》) 对此长度: 本弹簧中)	2例 定义的属性 此面定义的属	转动惯性矩 3	0. 1. 1. P-Detta 参数
浅、面、实 在线弹簧; 对面和实(方向属性 方向	(体弹簧) 对此长度: 本弹簧中) 固定	公例 定义的属性 此面定义的属 事线性	转动惯性起 3 酸 属性	0. 1. 1. P-Detta 参数 高级…
浅、面、实 在线弹簧; 对面和实(方向属性 方向 ☑ U1	(体弹簧)(对此长度) 体弹簧中) 固定	2例 定义的属性 此面定义的属 非线性	转动惯性矩 3 酸性 属性 修改/显示 U1	0. 1. 1. P-Detta 参数 高级
浅、面、实 在线弹簧 对面和实(方向属性 方向 ▼ U1 ▼ U2	(体弾簧) 対此长度: 本弾簧中) 固定 同	2例 定义的属性 此面定义的属 非线性 □	转动惯性矩 3 離 属性 修改/显示 U1 修改/显示 U2	0. 1. 1. P-Detta 参数 高级…
浅、面、实 在 3 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第	体弹簧灯 对此长度: 本弹簧中, 固定 同 同	2例 定义的属性 此面定义的属 非线性	转动惯性矩 3 離 魔性 修改/显示 U1 修改/显示 U2 修改/显示 U3	0. 1. 1. P-Delta 参数 高级…
浅、面、突 オ オ オ 方 向 属性 方 向 図 U1 図 U2 図 U2 図 U2 図 U2 図 U3 同 R1	体弹簧灯 対此长度 本弹簧中) 固定 同	2例 定义的属性 此面定义的属 非线性 □ □	转动惯性矩 3 離性 「魔性 修改/显示 U1 修改/显示 U2 修改/显示 U3 修改/显示 R1	0. 1. 1. P-Detta 参数 高级…
式、面、实 対面和实(方向属性 戸の属性 ア U1 ア U2 ア U3 ■ R1 ■ R2	体弹簧灯 对此长度: 本弹簧中 固定		转転加價性矩 3 離 加 「 「 「 「 「 「 「 「 「 「 「 「 「	0. 1. 1. P-Detta 参数 高级… 确定

图 3-6 隔震支座参数含义

连接单元参数定义中,1、2、3 指连接单元的局部坐标轴方向。如图 3-6 所示,U₁代表 连接单元轴向、U₂、U₃代表连接单元剪切方向。一般情况下,勾选 U₁、U₂、U₃方向。

"固定"代表某方向上的刚度无限大,在对应方向上无变形;"非线性"则在对应方向 上可考虑其非线性属性。

普通橡胶隔震器和铅芯橡胶隔震器和在模拟时有所不同,普通橡胶隔震器仅考虑其线性 属性,而铅芯橡胶隔震器需要考虑水平剪切方向的非线性属性。

根据建筑抗震设计规范,在设防地震下,使用隔震支座水平剪切应变为100%时的性能 参数进行分析计算;在罕遇地震下,使用隔震支座水平剪切应变为250%时的性能参数进行 分析计算。

3.2.1 普通橡胶隔震器模拟

普通橡胶隔震器在分析过程中只考虑其线性性能。在 Rubber Isolator 定义中,只勾选 U1、U2、U3,并对此三个方向的属性分别进行定义。

连接/支座方向属性	-		X
~标识			
属性名称	LNR400		
方向	U1		
类型	Rubber Iso	ator	
非线性	否		
↓ 一所有分析工况使用的属性			
有效刚度		1600.	
有效阻尼		0.	
确定	IJ	消	

图 3-7 U1 方向属性定义对话框

连接/支座方向属性		×
┌标识		
属性名称	LNR400	
方向	U2	
类型	Rubber Is	olator
非线性	否	
所有分析工况使用的属性	ŧ	
有效刚度		660.
有效阻尼		0.
剪切变形位置		
距端距离		0.8
确定	I	现消

图 3-8 U2 方向属性定义对话框

表 2-3	橡胶隔震支座	产品规格
型号	水平等效刚度 (kN/m)	竖向刚度 (kN/mm)
LNR400	660	1600

有效刚度:隔震器的对应方向的刚度,U1方向刚度代表其轴向刚度;U2和U3方向刚 度代表其水平剪切刚度。此数值为线性属性,只用于线性分析工况。

有效阻尼:隔震器的有效阻尼值,体现线性分析中隔震器的能量耗散能力,与隔震器的 剪切应变相关。切记,有效阻尼不能与隔震器的等效阻尼比混为一谈。由于隔震模型一般采 用非线性时程分析,此数值在非线性分析中不发挥作用,故通常情况下填写0。 剪切变形位置:剪切变形发生的位置,注意此处输入的数值为距离J端的绝对距离。J 端指沿连接单元轴向,末端位置。

一般情况下,U2方向的属性与U3方向属性相同,采用同样的参数。

3.2.2 铅芯橡胶隔震器模拟

铅芯橡胶隔震器在分析过程中考虑其水平方向的非线性性能。在 Rubber Isolator 定义中, 勾选 U1、U2、U3, 并勾选 U2、U3 方向的非线性。分别对此三个方向的属性进行定义完成 铅芯橡胶隔震器属性模拟。

连接/支座	类型	Rubber Isola	itor 👻	2	(连接/支座方向属性	
属性名称 属性注释	{	LRB500		设置默 修改/显	标识 属性名称 方向	LRB500
总质量和重	Ē里				类型	Rubber Isolator
质量	C	D.	转动惯性矩 1	0.	非线性	^是 等效水平刚」
重量	C	D.	转动惯性矩 2	0.	线性分析工况使用的器	製性
			转动惯性矩 3	0.	有效相度	0.
线、面、实 在线弹簧;	医体弹簧比 对此长度新	《例 定义的属性		1.	剪切变形位置 距-端距离	0.8 ▲屈服前刚
线、面、穿 在线弹簧; 对面和实行 方向属性	(体弹簧) 对此长度; 体弹簧中1	(例 定义的属性 比面定义的属(<u>۲</u>	1. 1. P-D	剪切变形位置 距端距离 非线性分析工见使用的 问度 原服力	0.8 屈服前刚 10910. 40.
 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	(体弾簧) 対此长度 体弾簧中1 固定	》例 定义的属性 比面定义的属性 非线性	度性	1. 1. P-D	期切变形位置 距-端距离 非线性分析工见使用的 问度 魔服力 屈服后问度比	0.8 屈服前刚 10910. 40. 0.1
 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	○ 保健学業は 対此长度 体学業中」 固定 □ □	 (例) 定义的属性 比面定义的属性 非线性 □ □ 	性 属性 修改/显示 U1	1. 1. P.D	費切交形位置 距端距离 非线性分析工兒使用的 问度 履服力 履服后问度比	0.8 屈服前刚 10990. 0.1 0.1 配服后/屈
銭、面、实 在线弾簧 对面和实 方向属性 方向 ▼ U1 ▼ U2 ▼ U2	医体弹簧状 对此长度: 体弹簧中」 固定	(例 定义的属性 比面定义的属性 事线性 回 図 図	性 尾性 修改显示 U1 修改显示 U2	1. 1. P.D	野切支形位置 距端距离 事就性分析工兌使用 问度 風服力 風服后同度比 確定	0.8 思服前刚 10910. 40. 0.1 配服后/屈
(3、面、ダ 在线弾簧) 対面和实(方向属性 方向 ▼ U1 ▼ U2 ▼ U2 ▼ U3 ■ P1	医体弹簧比 对此长弹簧中1 固定	(例 定义的属性 定义的属性 単 ま线性 ■ ■ ■ ■	唯 修改显示 ∪1 修改显示 ∪2 修改显示 ∪2	1. 1. P-D	對均支用检查 距端距离 甲基性分析工具使用的 问度 原服力 原服后间度比	0.8 田服前刚 10910. 40. 0.1 配服后/屈
		が 定义的属性 比面定义的属性 事 また 「 「 「 「 「 「 「 「	属性 修改显示 U1 修改显示 U2 修改显示 U3 修改显示 R1	1. 1.	野切死形位置 距端距离 非线性分析工発使用的 回度 屈服力 屈服后间度比 確定	0.8 屈服前刚 10910. 40. 0.1 配服服后/屈

图 3-7 铅芯橡胶隔震支座参数

	1		而成入江) 前	/901H	
	屈服前	等效	如度		
刑旦	团庙	100%水平	%水平 250%水平 竖		屈服力
至与	的反	剪切变形	剪切变形		
	kN/m	kN/m	kN/m	kN/mm	kN
LRB400	8790	1040	820	2200	27.0
LRB500	10910	1270	1010	2400	40.0
LRB600	13110	1580	1580	2800	63.0

表 2-2 铅芯隔震支座产品规格

对于考虑 U2 和 U3 方向非线性属性的含铅芯隔震器,其水平剪切刚度,与隔震器的剪 切应变相关,故在设防地震下取 100%水平剪切变形时对应的水平刚度;罕遇地震下,取 250% 水平剪切变形时对应的水平刚度。

非线性分析工况使用的属性,包含以下内容:

刚度:隔震器的初始刚度 K_i,即屈服前刚度。

屈服力:由实验确定,来自产品参数。

訊信达

屈服后刚度比: 屈服后刚度与屈服前刚度的比值。参考《橡胶支座第3部分: 建筑隔震 橡胶支座》 GB20688.3-2006 中的规定, 一般建筑结构取 1/10, 桥梁结构取 1/6.5。

U2 方向的属性与 U3 方向属性相同,采用同样的参数。

3.3 模态分析

SAP2000 中提供两种模态分析方法:特征向量法和 Ritz 向量法。对于隔震结构,通常采用 FNA 法进行分析,该方法基于模态分析的结果。为保证 FNA 法结果计算的准确性,强烈 建议模态分析采用 Ritz 向量法。

3.3.1 Ritz 向量法

Ritz 向量法模态分析是 CSI 推荐的模态分析方法。Ritz 向量法模态分析可求解由特定荷载激励下的模态,所以该方法求得的振型与荷载空间分布相关。

荷载工况的名称 MODAL	设置自	記 定义名	主意 修改/显示	荷载工况的类型 Modal
使用的刚度				模态类型
◎ 零初始条件-	零应力状态			◎ 特征向望
⑦ 非线性工况结 重要提示:	ぼ 束时的刚度 当前工况™不	"包含非线性工	▼ 况中的荷载	 Ritz 向量
振型数目				质量源
最大的振型	数		50	MSSSRC1
最小的振型	数		1	
施加的荷载	荷载夕称	最大循环数	动力参与系数 的目标值(%)	
Accel -	UX -	0	99.	
Accel	UX	0	99.	
Accel	UY	0	99.	
Accel	UZ	0	99.	
Link	All	0	99.	
Load Pattern	DEAD	0	99.	确定
Luad Patterni 添加	11 修	改	删除	取消

图 3-7 RITZ 向量法模态工况

如图 3-7 所示,在定义 Ritz 向量法模态工况时,用户需要输入"振型数目"和"施加的 荷载"。

对于模态数量的取值,一般建议模态数量=连接单元的非线性自由度数+楼层数量 X3+考虑的荷载 X1。以本案例来讲,预估所需模态数量 n=16X2+4X3+2X1=46,故取最大振型数为 50。判断 Ritz 向量模态数量是否满足要求,需要查看荷载参与系数是否达到较高水平,而非质量参与系数结果。其中,静力参与系数需达到 100%,动力参与系数尽量高。建议用户在计算时,选择多个模态数量进行试算,结果趋于收敛即可。

另外,用户还需要定义施加的荷载。施加的荷载可选择三种荷载类型:加速度荷载、荷载样式、内置的非线性变形荷载。

对于常规结构,可选择 X、Y 方向的加速度当做施加的荷载,此时,可基于模态分析的 结果进行水平方向上的地震作用求解。若要考虑竖向地震作用,则需要同时施加 Z 方向的加 速度。 对于隔震结构或消能减震结构,由于模型中存在使用连接单元模拟的隔震器或者消能减 震器,在进行模态分析时,需要在施加的荷载中考虑连接单元的非线性变形荷载和恒、活荷 载。

本案例中考虑了 UX、UY、UZ 方向的加速度荷载,所有连接单元的非线性变形荷载,以 及恒、活荷载,如图 3-7 所示。

3.3.2 特征向量法

特征向量法模态分析求解无阻尼下结构自由振动的模态和频率,此分析只与结构自身的 刚度和质量相关,通过此分析,可以很好地辅助我们直观了解结构的动力特性。

🗙 荷载工况数据 -振型		X
荷载工况的名称 MODAL 设置自定义名	注意 	荷载工况的类型 Modal
使用的利度 ● 零初始条件 - 零应力状态 ● 非线性工况结束时的列度 重要提示: 当前工况"不"包含非线性]	 况中的荷载	模态类型 ◎ 特征向里 ◎ Ritz 向里
振型数目 最大的振型数 最小的振型数	12	质量源 MSSSRC1
施加的荷载		
其他参数 频率偏移(中心) 截断频率(半径)	0.	确定
收敛容差 ☑ 允许自动的频率偏移	1.000E-09	<u>41,7</u>

图 特征向量法模态工况定义对话框

一般情况下,使用此方法定义模态工况,工程师只需修改"最大的振型数"一项控制模态分析的求解阶数,以保证模态分析有足够的质量参与系数。

3.3.3 模态结果解读

对于模态分析的结果,我们常关注的内容包括周期、荷载参与系数、质量参与系数,以 及基于质量参与系数对振型振动方向的判断。

周期结果

通过菜单**显示>显示表格>分析结果>结构结果>Modal Information>Table: Modal Periods** And Frequencies 可显示周期结果,如下图 3-8 所示。

在图中可以看到每一阶的周期、频率、圆频率等相关信息。

文件	(F) 视图(V)	格式过滤或选	择(M) 选择	≨(S) 选项(O)				_
料図: 寸波:	如注释		Modal Periods	s And Frequencie	s			_
	OutputCase	StepType Text	StepNum Unitless	<u> </u>	Frequency Cyc/sec	CircFreq rad/sec	Eigenvalue rad2/sec2	
•	MODAL	Mode	1	1.92019	0.52078183	3.27216876	10.7070884	
	MODAL	Mode	2	1.907708	0.52418919	3.29357782	10.8476548	
	MODAL	Mode	3	1.648669	0.60654971	3.81106423	14.5242106	
	MODAL	Mode	4	0.207474	4.81987746	30.2841832	917.131755	
	MODAL	Mode	5	0.195	5.12819846	32.2214212	1038.21998	
	MODAL	Mode	6	0.174275	5.73806068	36.0532985	1299.84033	
	MODAL	Mode	7	0.091971	10.8730506	68.3173922	4667.26608	
	MODAL	Mode	8	0.086141	11.6088299	72.9404298	5320.30630	
	MODAL	Mode	9	0.078138	12.7978463	80.4112399	6465.96750	
	MODAL	Mode	10	0.070918	14.1007800	88.5978142	7849.57269	I
	MODAL	Mode	11	0.062892	15.9003340	99.9047451	9980.95811	
	MODAL	Mode	12	0.061234	16.3308510	102.609763	10528.7635	l
	MODAL	Mode	13	0.054427	18.3730926	115.441545	13326.7504	
	MODAL	Mode	14	0.053048	18.8509742	118.444164	14029.0200	
	MODAL	Mode	15	0.052149	19.1758196	120.485228	14516.6901	l
	MODAL	Mode	16	0.051428	19.4445695	122.173833	14926.4457	
	MODAL	Mode	17	0.049357	20.2606208	127.301234	16205.6044	
	MODAL	Mode	18	0.047874	20.8883813	131.245570	17225.3998	
	MODAL	Mode	19	0.047845	20.9009764	131.324708	17246.1789	
	MODAL	Mode	20	0.046262	21.6160139	135.817421	18446.3719	
	MODAL	Mode	21	0.045779	21.8438442	137.248921	18837.2664	
	MODAL	Mode	22	0.044761	22.3408871	140.371934	19704.2798	
_								-

图 3-8 周期结果

荷载参与系数

通过菜单**显示>显示表格>分析结果>结构结果>Modal Information>Table: Modal** Participating Mass Ratios 可显示结构的荷载参与系数。

	(Modal Lo	ad Particip	ation Ratio	s 🗖 🗖 🗙
	文件(F)	视图(V)	Edit 格式)	寸濾或选择(M)	选择(S)	选项(O)	
	单位:如	主释		Modal Loa	d Participation R	atios	Ý
-	过滤:						
		OutputCase Text	ItemType Text	ltem Text	Static Percent	Dynamic Percent	<u>^</u>
	۱.	MODAL	Acceleration	UX	100	100	=
		MODAL	Acceleration	UY	100	100	
		MODAL	Acceleration	UZ	100	96.7003	
		MODAL	Load Pattern	DEAD	100	96.4154	
		MODAL	Load Pattern	LIVE	100	94.3657	
		MODAL	Link	1 (U1)	100	96.6663	
		MODAL	Link	1 (U2)	100	94.1434	
		MODAL	Link	1 (U3)	100	96.6663	
		MODAL	Link	1 (R1)	100	96.6663	
		MODAL	Link	1 (R2)	100	96.6663	
		MODAL	Link	1 (R3)	100	96.6663	
		MODAL	Link	2 (U1)	100	96.3475	
		MODAL	Link	2 (U2)	100	94.1434	
		MODAL	Link	2 (U3)	100	96.3475	
		MODAL	Link	2 (R1)	100	96.3475	
1		MODAL	Link	2 (R2)	100	96.3475	
		MODAL	Link	2 (R3)	100	96.3475	
		MODAL	Link	3 (U1)	100	95.3483	
		MODAL	Link	3 (U2)	100	94.1434	
		MODAL	Link	3 (U3)	100	95.3483	~
	记录:	<< <	1 >	>> / 149)	添	加表格 完成

图 3-9 荷载参与系数

质量参与系数

通过菜单**显示>显示表格>分析结果>结构结果>Modal Information>Table: Modal Load** Participating Ratios 可显示结构的质量参与系数。

规范中规定的质量参与系数大于 90%的规定,对应于 SAP2000 输出结果中最后一阶模态的 SumUX 和 SumUY 值,如红色线框所示。

£释										Modal Participating Mass Ratios					
OutputCase	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless	SumUZ Unitless	RX Unitless	RY Unitless	RZ Unitless	SumRX Unitless	SumRY Unitless	SumRZ Unitless
MODAL	Mode	35	0.029818	7.659E-09	7.102E-09	0.09521	1	1	0.99	2.119E-05	0.0002958	1.863E-10	0.79	0.61	
MODAL	Mode	36	0.021936	1.518E-09	1.144E-09	9.589E-05	1	1	0.99	3.628E-06	0.0004793	1.34E-11	0.79	0.61	
MODAL	Mode	37	0.00162	2.423E-13	7.461E-15	0.00129	1	1	0.99	9.013E-06	2.237E-06	2.758E-13	0.79	0.61	
MODAL	Mode	38	0.001045	2.378E-14	5.501E-14	2.262E-05	1	1	0.99	0.001456	0.04293	4.592E-12	0.79	0.66	
MODAL	Mode	39	0.000941	4.269E-13	2.849E-13	2.219E-05	1	1	0.99	0.006624	0.03842	7.229E-14	0.8	0.69	
MODAL	Mode	40	0.000857	1.306E-12	2.886E-12	7.976E-06	1	1	0.99	0.01044	0.0961	2.21E-12	0.81	0.79	
MODAL	Mode	41	0.000666	9.53E-13	4.827E-15	0.000115	1	1	0.99	0.008236	0.004744	3.185E-11	0.82	0.8	
MODAL	Mode	42	0.000584	2.073E-13	3.277E-14	0.0003864	1	1	0.99	3.255E-05	1.577E-08	4.975E-11	0.82	0.8	
MODAL	Mode	43	0.000413	3.351E-11	1.154E-12	0.0001714	1	1	0.99	1.256E-06	0.003788	1.009E-12	0.82	0.8	
MODAL	Mode	44	0.000309	1.173E-12	2.139E-12	5.256E-05	1	1	0.99	0.001144	0.000246	1.538E-13	0.82	0.8	
MODAL	Mode	45	0.000263	1.037E-11	1.131E-13	7.01E-05	1	1	0.99	5.062E-06	0.0001892	1.077E-13	0.82	0.8	
MODAL	Mode	46	0.000242	1.607E-13	9.792E-16	6.828E-05	1	1	0.99	0.000833	4.577E-06	2.715E-14	0.82	0.8	
MODAL	Mode	47	0.00024	1.457E-14	2.32E-14	8.38E-08	1	1	0.99	0.001381	4.59E-06	6.18E-14	0.82	0.8	
MODAL	Mode	48	0.00022	1.862E-13	2.356E-13	9.687E-06	1	1	0.99	0.003092	4.486E-05	1.085E-13	0.82	0.8	
MODAL	Mode	49	0.000197	5.646E-13	3.705E-12	9.845E-06	1	1	0.99	0.003075	0.0001901	4.318E-15	0.83	0.8	
MODAL	Mode	50	0.000167	2.38E-14	3.548E-12	7.662E-05	1	1	0.99	0.004103	0.001981	6.498E-13	0.83	0.8	

图 3-10 质量参与系数

振型振动方向判断

对于振型振动方向的判断,在 SAP2000 中同样通过质量参与系数来进行判断。在如下 图所示的质量参与系数表格中,对比每一阶模态下,UX、UY、RZ 三项质量参与系数的相对 值,哪一项最大,则该阶模态的振型就以此方向振动为主。

在本例中,一阶模态,UX的质量参与系数最大,则此阶模态以X方向振动为主;同理, 二阶模态,UY的质量参与系数最大,则此阶模态以Y方向振动为主;而三阶模态,RZ的质 量参与系数最大,则此阶模态以绕Z轴的扭转为主。 記信达

文件(F) 视图(V)	格式过滤或选	择(M) 选择	(S) 选项(O))			
単位: 过滤:	如注释		Modal Par	ticipating Mass	Ratios			
	OutputCase	StepNum Unitless	Period Sec	StepType Text	UX Unitless	UY Unitless	RZ Unitless	Sun Unit
Þ	MODAL	1	1.92019	Mode	1	0	0	
	MODAL	2	1.907708	Mode	0	1	0	
	MODAL	3	1.648669	Mode	0	0	1	
	MODAL	4	0.207474	Mode	0.0006504	1.59E-14	5.253E-13	
	MODAL	5	0.195	Mode	6.7E-14	0.0004912	7.896E-12	
	MODAL	6	0.174275	Mode	7.216E-12	3.431E-11	0.0005726	
	MODAL	7	0.091971	Mode	8.783E-05	1.626E-08	1.222E-08	
	MODAL	8	0.086141	Mode	4.437E-08	6.853E-05	2.823E-07	
	MODAL	9	0.078138	Mode	2.403E-08	3.631E-07	9.124E-05	
	MODAL	10	0.070918	Mode	6.726E-11	2.073E-09	3.33E-12	
	MODAL	11	0.062892	Mode	7.52E-08	7.591E-07	1.6E-10	
(1			÷.
记录:	<< <	1 >	>> / 50		添加	吅表格	完成	

图 3-11 判断振动方向

注:关于模态分析的更多内容可参考《CSI分析参考手册》模态分析一章。

3.4 快速非线性分析(FNA)法

SAP2000 提供两种时程求解方法:直接积分法和振型叠加法。非线性直接积分可以在分析中考虑所有非线性类型(包含塑性铰/分层壳/纤维铰的非线性、P-Delta 效应、大位移效应、 连接单元的非线性、单拉单压单元的非线性等),是工程分析中最通用的方法。而振型叠加 非线性分析,也称快速非线性分析(FNA)法,在目前的版本中只能考虑有限的非线性(连 接单元的非线性、单拉单压单元的非线性),常见于减隔震结构分析中,具有计算稳定、运 算速度快等优点。

注: 在 FNA 法中也能考虑 P-Delta 效应,具体方法请参考筑信达知识库文章 http://www.cisec.cn/Support/knowledgeBase/knowledgeBaseMenu.aspx?menuid=599。

FNA 法分析基于模态分析的结果,建议模态分析采用 Ritz 向量法。

值得注意的是 FNA 法分析只能从其他 FNA 分析继续,也就是说用于考虑地震分析中竖 向荷载的初始工况,只能使用 FNA 来模拟。利用 FNA 动力分析来模拟静力荷载,关键是避 免在加载过程中结构震动而影响最终分析结果。具体操作如下:

步骤一: 定义斜坡函数, 以缓慢地施加重力荷载。

点击菜单定义>函数>时程>添加新函数,在弹出的对话框中进行如图 3-11 所示的操作。

图 3-12 RAMPTH 函数

斜坡函数斜坡段时长一般取结构第一周期的 10 倍,水平段时间一般为斜坡段时间的 2 倍,目的是为了减缓荷载施加的速度,避免结构震动。本例中,斜坡时间为 20s,总时间为 60s。

步骤二: 定义拟静态的 FNA 分析工况

通过菜单定义>荷载工况,在弹出的对话框中选择非线性模态叠加法时程分析,如下图 3-12 所示。

"模态荷载工况"项选择定义好的 Ritz 向量法模态分析;

"施加的荷载"栏中一般选择 1.0Dead+0.5Live, 函数选择选择定义好的斜坡函数;

"时间步数据": 仅关注荷载施加后的结构相应, 一般总时长取斜坡函数的总时长。FNA 分析与时间步大小无关, 故时间步的大小一般不用取太小, 本例中取 20s。

"振型阻尼":为了抑制结构的振动,使用高模态阻尼,取 0.99。

記言达

图 3-13 HISTQS 工况

步骤三:在定义地震时程工况时,选择从 HISTQS 工况的结束状态继续分析,如图 3-13 所示。

荷载工况的名称 EL-Centro	设置自	注 定义名 [:意 修改/显示	荷载工况的类型 Time History	! ▼ 设计
初始条件 ○ 零初始条件 ● 从模态时程	- 从零应力状态; 工况的结束状态;	干始 准续分析	HISTQS -	分析类型 ○ 线性 ◎ 非线性	求解类型 ◎ 振型叠加法 ◎ 直接积分法
里要提示: 模态荷载工况 用于提取振型的	^{国制工况中}	巴吉則提上况中	HYP 韩从	 时程类型 ● 瞬态 ● 周期 	
施加的荷载 荷载类型	荷载名称	函数	比例系数		质量源 Previous (MSSSRC1)
Accel Accel Accel	U1 ▼ U1 U2	EL-200 -	0.01	添加	
□ 显示高级的	荷载参数				
时间步数据 输出时间步 输出时间步	⇒的数量 ⇒的大小		2000		
其他参数		Constant at 0	05 (15)		福完
振型阻尼 非线性参*	н [Default	03 118 (後	牧/显示	HIN 244

图 3-14 基于 FNA 法的时程工况

注意: 非线性荷载工况可以继承初始条件荷载工况的刚度、全部结构效应(包括内力、应力、变形等), 以及先前加载历史导致的材料非线性效应等全面信息。